Home
Class 12
MATHS
A point (alpha, beta, gamma) satisfies t...

A point `(alpha, beta, gamma)` satisfies the equation of the plane `3x+4y+7z=3.` The value of `beta`, such that `vecp=alphahati+betahatj+gammahatk` satisfies the relation `hatjxx(hatjxxvecp)=vec0`, is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \beta \) for the point \( (\alpha, \beta, \gamma) \) that satisfies the equation of the plane \( 3x + 4y + 7z = 3 \) and the relation \( \hat{j} \times (\hat{j} \times \vec{p}) = \vec{0} \). ### Step 1: Substitute the point into the plane equation The point \( (\alpha, \beta, \gamma) \) satisfies the equation of the plane: \[ 3\alpha + 4\beta + 7\gamma = 3 \] ### Step 2: Understand the vector \( \vec{p} \) The vector \( \vec{p} \) can be expressed as: \[ \vec{p} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \] ### Step 3: Apply the vector triple product identity We know that: \[ \hat{j} \times (\hat{j} \times \vec{p}) = (\hat{j} \cdot \vec{p}) \hat{j} - (\hat{j} \cdot \hat{j}) \vec{p} \] Since \( \hat{j} \cdot \hat{j} = 1 \), this simplifies to: \[ \hat{j} \times (\hat{j} \times \vec{p}) = (\hat{j} \cdot \vec{p}) \hat{j} - \vec{p} \] ### Step 4: Calculate \( \hat{j} \cdot \vec{p} \) Calculating the dot product: \[ \hat{j} \cdot \vec{p} = \hat{j} \cdot (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}) = 0 \cdot \alpha + 1 \cdot \beta + 0 \cdot \gamma = \beta \] ### Step 5: Substitute into the equation Substituting back, we have: \[ \hat{j} \times (\hat{j} \times \vec{p}) = \beta \hat{j} - \vec{p} \] Setting this equal to \( \vec{0} \): \[ \beta \hat{j} - (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}) = \vec{0} \] ### Step 6: Rearranging the equation Rearranging gives: \[ \beta \hat{j} - \beta \hat{j} - \alpha \hat{i} - \gamma \hat{k} = \vec{0} \] This simplifies to: \[ -\alpha \hat{i} - \gamma \hat{k} = \vec{0} \] From this, we conclude: \[ \alpha = 0 \quad \text{and} \quad \gamma = 0 \] ### Step 7: Substitute back into the plane equation Substituting \( \alpha = 0 \) and \( \gamma = 0 \) into the plane equation: \[ 3(0) + 4\beta + 7(0) = 3 \implies 4\beta = 3 \] ### Step 8: Solve for \( \beta \) Solving for \( \beta \): \[ \beta = \frac{3}{4} \] Thus, the value of \( \beta \) is \( \frac{3}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the the image of the point (alpha, beta, gamma) with respect to the plane 2x+y+z=6 .

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta - gamma )^2 +( gamma - alpha)^2 +(alpha - beta)^2

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 tan3x , then tanalpha+tanbeta+tangamma+tandelta is equal to :

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha and beta are acute such that alpha+beta and alpha-beta satisfy the equation tan^(2)theta-4tan theta+1=0 , then (alpha, beta ) =

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =