Home
Class 12
MATHS
The value fo the integral I=int(0)^(oo)(...

The value fo the integral `I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2)))` is equal to `kpi`, then the value of 16k is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} \frac{dx}{(1 + x^{2020})(1 + x^{2})} \) and find the value of \( 16k \) where \( I = k\pi \), we can follow these steps: ### Step 1: Change of Variable Let \( x = \tan \theta \). Then, the differential \( dx \) becomes \( dx = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). ### Step 2: Substitute in the Integral Substituting \( x = \tan \theta \) into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(1 + \tan^{2020} \theta)(1 + \tan^2 \theta)} \] Since \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{(1 + \tan^{2020} \theta)} \] ### Step 3: Use Symmetry Property of Integrals We can use the property of integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{(1 + \tan^{2020} \theta)} = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{(1 + \cot^{2020} \theta)} \] Let’s denote the second integral as \( I' \): \[ I' = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{(1 + \cot^{2020} \theta)} = \int_{0}^{\frac{\pi}{2}} \frac{\tan^{2020} \theta}{(1 + \tan^{2020} \theta)} \, d\theta \] ### Step 4: Combine the Integrals Adding both integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^{2020} \theta} + \frac{1}{1 + \cot^{2020} \theta} \right) d\theta \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{1 + \tan^{2020} \theta}{(1 + \tan^{2020} \theta)(1 + \cot^{2020} \theta)} \, d\theta \] Since \( \cot \theta = \frac{1}{\tan \theta} \), we can simplify further. ### Step 5: Evaluate the Integral This integral evaluates to: \[ 2I = \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{2} \] Thus, we find: \[ I = \frac{\pi}{4} \] ### Step 6: Relate to \( k \) Since \( I = k\pi \), we have: \[ \frac{\pi}{4} = k\pi \implies k = \frac{1}{4} \] ### Step 7: Calculate \( 16k \) Now, we calculate \( 16k \): \[ 16k = 16 \times \frac{1}{4} = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :