Home
Class 12
MATHS
Let the integral I=int((2020)^(x+sin^(-1...

Let the integral `I=int((2020)^(x+sin^(-1)(2020)^(x)))/(sqrt(1-(2020)^(2x)))dx =K^(2)(202)^(sin^(-1)(2020)^(x))+lambda` (where, `lambda` is constant of integration), then the value of `2020^(K)` is

A

2020

B

2019

C

e

D

`(1)/(e )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{2020^{x + \sin^{-1}(2020^x)}}{\sqrt{1 - (2020^{2x})}} \, dx \) and find the value of \( 2020^K \), we will follow these steps: ### Step 1: Substitute \( t = 2020^x \) Let \( t = 2020^x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{t \ln(2020)} \] ### Step 2: Rewrite the integral Substituting \( t \) into the integral, we have: \[ I = \int \frac{t \cdot 2020^{\sin^{-1}(t)}}{\sqrt{1 - t^2}} \cdot \frac{dt}{t \ln(2020)} = \frac{1}{\ln(2020)} \int \frac{2020^{\sin^{-1}(t)}}{\sqrt{1 - t^2}} \, dt \] ### Step 3: Substitute \( u = \sin^{-1}(t) \) Now, let \( u = \sin^{-1}(t) \), which implies \( t = \sin(u) \). The differential \( dt \) is: \[ dt = \cos(u) \, du \] Thus, we can rewrite the integral as: \[ I = \frac{1}{\ln(2020)} \int \frac{2020^u}{\sqrt{1 - \sin^2(u)}} \cos(u) \, du \] Since \( \sqrt{1 - \sin^2(u)} = \cos(u) \), the integral simplifies to: \[ I = \frac{1}{\ln(2020)} \int 2020^u \, du \] ### Step 4: Integrate The integral of \( 2020^u \) is: \[ \int 2020^u \, du = \frac{2020^u}{\ln(2020)} + C \] Thus, we have: \[ I = \frac{1}{\ln(2020)} \left( \frac{2020^{\sin^{-1}(t)}}{\ln(2020)} + C \right) \] Substituting back \( t = 2020^x \): \[ I = \frac{2020^{\sin^{-1}(2020^x)}}{\ln(2020)^2} + C \] ### Step 5: Compare with the given expression We are given that: \[ I = K^2 \cdot 2020^{\sin^{-1}(2020^x)} + \lambda \] By comparing both expressions, we can see that: \[ K^2 = \frac{1}{\ln(2020)^2} \] Thus, taking the square root: \[ K = \frac{1}{\ln(2020)} \] ### Step 6: Find \( 2020^K \) Now we need to find \( 2020^K \): \[ 2020^K = 2020^{\frac{1}{\ln(2020)}} \] Using the property of logarithms, we can express this as: \[ 2020^K = e^{\ln(2020) \cdot \frac{1}{\ln(2020)}} = e \] ### Final Answer Thus, the value of \( 2020^K \) is: \[ \boxed{e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the constant of integration). If f((pi)/(4))=1 , then the fundamental period of y=f(x) is