Home
Class 12
MATHS
For any positive n, let f(n)=(4n+sqrt(4n...

For any positive n, let `f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1))`. Then `((Sigma_(k=1)^(40)f(k))/(100))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function defined as: \[ f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \] We need to calculate: \[ \frac{\sum_{k=1}^{40} f(k)}{100} \] ### Step 1: Simplifying \( f(n) \) We can rewrite \( f(n) \) as follows: \[ f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \] Notice that \( \sqrt{4n^2 - 1} = \sqrt{(2n - 1)(2n + 1)} \). Thus, we can express \( f(n) \) as: \[ f(n) = \frac{4n + \sqrt{(2n - 1)(2n + 1)}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \] ### Step 2: Rationalizing the Denominator To simplify \( f(n) \), we can multiply the numerator and denominator by \( \sqrt{2n + 1} - \sqrt{2n - 1} \): \[ f(n) = \frac{(4n + \sqrt{(2n - 1)(2n + 1)}) (\sqrt{2n + 1} - \sqrt{2n - 1})}{(\sqrt{2n + 1} + \sqrt{2n - 1})(\sqrt{2n + 1} - \sqrt{2n - 1})} \] The denominator simplifies to: \[ (\sqrt{2n + 1})^2 - (\sqrt{2n - 1})^2 = (2n + 1) - (2n - 1) = 2 \] Thus, we have: \[ f(n) = \frac{(4n + \sqrt{(2n - 1)(2n + 1)})(\sqrt{2n + 1} - \sqrt{2n - 1})}{2} \] ### Step 3: Further Simplifying \( f(n) \) Expanding the numerator: \[ f(n) = \frac{(4n\sqrt{2n + 1} - 4n\sqrt{2n - 1} + \sqrt{(2n - 1)(2n + 1)}(\sqrt{2n + 1} - \sqrt{2n - 1}))}{2} \] This expression can be complex, but we can observe that it leads to a telescoping series when we compute \( \sum_{k=1}^{40} f(k) \). ### Step 4: Evaluating the Sum When we compute \( \sum_{k=1}^{40} f(k) \), we find that many terms cancel out. Specifically, we can express \( f(k) \) in terms of \( k \): \[ f(k) = \frac{1}{2} \left( (2k + 1)^{3/2} - (2k - 1)^{3/2} \right) \] Thus, the sum becomes: \[ \sum_{k=1}^{40} f(k) = \frac{1}{2} \left( (81^{3/2} - 1^{3/2}) \right) \] ### Step 5: Calculating the Final Value Calculating \( 81^{3/2} \): \[ 81^{3/2} = (9^2)^{3/2} = 9^3 = 729 \] So, we have: \[ \sum_{k=1}^{40} f(k) = \frac{1}{2} (729 - 1) = \frac{728}{2} = 364 \] Finally, we compute: \[ \frac{\sum_{k=1}^{40} f(k)}{100} = \frac{364}{100} = 3.64 \] ### Final Answer Thus, the value of \( \frac{\sum_{k=1}^{40} f(k)}{100} \) is: \[ \boxed{3.64} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For each positive integer n , let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)dot Then sum_(k=1)^(2009)f(K) is equal to 335 (b) 336 (c) 331 (d) 333

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

For any integer n, the argument of ((sqrt3+i)^(4n+1))/((1-isqrt3)^(4n))

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N then the remainder when f (1) + f (2) + f (3) + ..... + f (60) is divided by 9 is.

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]