Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt([x]^(2)-[x]-20))` is (where, `[.]` represents the greatest integer function)

A

`(-oo, -4)uu[6, oo)`

B

`(-oo, 4]uu[6, oo)`

C

`(-oo, 4)uu(6, oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{[\lfloor x \rfloor]^2 - [\lfloor x \rfloor] - 20}} \), where \( [\cdot] \) denotes the greatest integer function (floor function), we need to ensure that the expression inside the square root is positive, as it is in the denominator. ### Step-by-Step Solution: 1. **Identify the expression inside the square root**: \[ t = [\lfloor x \rfloor]^2 - [\lfloor x \rfloor] - 20 \] We need \( t > 0 \). 2. **Let \( \alpha = [\lfloor x \rfloor] \)**: The inequality becomes: \[ \alpha^2 - \alpha - 20 > 0 \] 3. **Factor the quadratic**: To factor \( \alpha^2 - \alpha - 20 \), we look for two numbers that multiply to \(-20\) and add to \(-1\). These numbers are \( -5 \) and \( 4 \). Thus, we can factor it as: \[ (\alpha - 5)(\alpha + 4) > 0 \] 4. **Find the critical points**: The critical points from the factors are: \[ \alpha = 5 \quad \text{and} \quad \alpha = -4 \] 5. **Test the intervals**: We will test the intervals determined by the critical points: - For \( \alpha < -4 \): Choose \( \alpha = -5 \): \[ (-5 - 5)(-5 + 4) = (-10)(-1) > 0 \quad \text{(positive)} \] - For \( -4 < \alpha < 5 \): Choose \( \alpha = 0 \): \[ (0 - 5)(0 + 4) = (-5)(4) < 0 \quad \text{(negative)} \] - For \( \alpha > 5 \): Choose \( \alpha = 6 \): \[ (6 - 5)(6 + 4) = (1)(10) > 0 \quad \text{(positive)} \] 6. **Determine the valid intervals**: The function is positive for: \[ \alpha < -4 \quad \text{or} \quad \alpha > 5 \] Thus, the valid intervals for \( \alpha \) are: \[ (-\infty, -4) \quad \text{and} \quad (5, \infty) \] 7. **Translate back to \( x \)**: Since \( \alpha = [\lfloor x \rfloor] \), we need to find the corresponding \( x \) values: - For \( \alpha < -4 \): This means \( [\lfloor x \rfloor] \leq -5 \), so \( x < -4 \). - For \( \alpha > 5 \): This means \( [\lfloor x \rfloor] \geq 6 \), so \( x \geq 6 \). 8. **Combine the intervals**: Therefore, the domain of \( f(x) \) is: \[ (-\infty, -4) \cup [6, \infty) \] ### Final Answer: The domain of the function \( f(x) \) is: \[ x \in (-\infty, -4) \cup [6, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x]) (where [] represents the greatest integer function is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of definition of the function f(x)=tan((pi)/([x+2])) , is where [] represents greatest integer function less than or equal to x.

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).