Home
Class 12
MATHS
If 0 lt alpha lt (pi)/(16) and (1+tan al...

If `0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2`, then the value of `alpha` is equal to

A

`(pi)/(18)`

B

`(pi)/(20)`

C

`(pi)/(24)`

D

`(pi)/(30)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (1 + \tan \alpha)(1 + \tan 4\alpha) = 2 \) under the condition \( 0 < \alpha < \frac{\pi}{16} \), we can follow these steps: ### Step 1: Expand the Equation We start by expanding the left side of the equation: \[ (1 + \tan \alpha)(1 + \tan 4\alpha) = 1 + \tan \alpha + \tan 4\alpha + \tan \alpha \tan 4\alpha \] Setting this equal to 2 gives us: \[ 1 + \tan \alpha + \tan 4\alpha + \tan \alpha \tan 4\alpha = 2 \] ### Step 2: Simplify the Equation Subtract 1 from both sides: \[ \tan \alpha + \tan 4\alpha + \tan \alpha \tan 4\alpha = 1 \] ### Step 3: Use the Tangent Addition Formula Recall the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] In our case, let \( A = \alpha \) and \( B = 4\alpha \). Then we can express the left side: \[ \tan(\alpha + 4\alpha) = \tan(5\alpha) = \frac{\tan \alpha + \tan 4\alpha}{1 - \tan \alpha \tan 4\alpha} \] From our earlier simplification, we know: \[ \tan \alpha + \tan 4\alpha = 1 - \tan \alpha \tan 4\alpha \] Thus, we can rewrite: \[ \tan(5\alpha) = 1 \] ### Step 4: Solve for \( 5\alpha \) The equation \( \tan(5\alpha) = 1 \) implies: \[ 5\alpha = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Since \( 0 < \alpha < \frac{\pi}{16} \), we take \( n = 0 \): \[ 5\alpha = \frac{\pi}{4} \] Dividing both sides by 5 gives: \[ \alpha = \frac{\pi}{20} \] ### Step 5: Verify the Condition Now we check if \( \frac{\pi}{20} \) satisfies the condition \( 0 < \alpha < \frac{\pi}{16} \): \[ \frac{\pi}{20} < \frac{\pi}{16} \quad \text{(since } 20 > 16\text{)} \] Thus, the condition is satisfied. ### Final Answer The value of \( \alpha \) is: \[ \alpha = \frac{\pi}{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt beta lt (pi)/(2) then

If 0lt=alpha,betalt=90^@ and tan(alpha+beta)=3 and tan(alpha-beta)=2 then value of sin2alpha is

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan alpha is

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

if (1+tan alpha )(1+tan4 alpha ) =2 where alpha in (0 , pi/16 ) then alpha equal to

If cos9alpha=sinalpha and 9alpha lt 90^(@) , then the value of tan5alpha is