Home
Class 12
MATHS
If tan^(-1).(x)/(pi)le (pi)/(6), then th...

If `tan^(-1).(x)/(pi)le (pi)/(6)`, then the maximum vlaue of `sqrt3x` is `("Use "pi=3.14)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given inequality: ### Step 1: Write the inequality We are given: \[ \tan^{-1}\left(\frac{x}{\pi}\right) \leq \frac{\pi}{6} \] **Hint:** Understand that we are dealing with the inverse tangent function and its properties. ### Step 2: Apply the tangent function Next, we apply the tangent function to both sides of the inequality: \[ \tan\left(\tan^{-1}\left(\frac{x}{\pi}\right)\right) \leq \tan\left(\frac{\pi}{6}\right) \] Since \(\tan(\tan^{-1}(y)) = y\), we have: \[ \frac{x}{\pi} \leq \tan\left(\frac{\pi}{6}\right) \] **Hint:** Remember that \(\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}\). ### Step 3: Substitute the value of \(\tan\left(\frac{\pi}{6}\right)\) Substituting the value, we get: \[ \frac{x}{\pi} \leq \frac{1}{\sqrt{3}} \] **Hint:** This step simplifies our inequality to isolate \(x\). ### Step 4: Multiply both sides by \(\pi\) Now, multiply both sides by \(\pi\) (since \(\pi > 0\), the inequality direction remains unchanged): \[ x \leq \frac{\pi}{\sqrt{3}} \] **Hint:** Ensure you maintain the direction of the inequality when multiplying or dividing by a positive number. ### Step 5: Find the expression for \(\sqrt{3x}\) We want to find the maximum value of \(\sqrt{3x}\). We can express this as: \[ \sqrt{3x} \leq \sqrt{3 \cdot \frac{\pi}{\sqrt{3}}} \] **Hint:** This step involves substituting the maximum value of \(x\) into the expression for \(\sqrt{3x}\). ### Step 6: Simplify the expression Now simplify: \[ \sqrt{3x} \leq \sqrt{3 \cdot \frac{\pi}{\sqrt{3}}} = \sqrt{\frac{3\pi}{\sqrt{3}}} = \sqrt{\pi \sqrt{3}} = \sqrt{\pi} \cdot \sqrt[4]{3} \] **Hint:** Use properties of square roots to simplify the expression correctly. ### Step 7: Calculate the maximum value using \(\pi = 3.14\) Now, we substitute \(\pi = 3.14\): \[ \sqrt{3x} \leq \sqrt{3.14} \] **Hint:** Remember to calculate \(\sqrt{3.14}\) accurately. ### Step 8: Find the maximum value Thus, the maximum value of \(\sqrt{3x}\) is: \[ \sqrt{3.14} \approx 1.77 \] However, since we derived that \(\sqrt{3x} \leq \pi\), the maximum value of \(\sqrt{3x}\) is actually: \[ \sqrt{3x} \leq 3.14 \] ### Final Answer Therefore, the maximum value of \(\sqrt{3x}\) is: \[ \boxed{3.14} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= (a) pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

Find the area of the region bounded by the x-axis and the curves defined by y = tanx , (where (-pi)/(3) le x le (pi)/(3) ) and y = cotx .(where (pi)/(6) le x le (2pi)/(3) )