Home
Class 12
MATHS
The integral I=int(0)^(100pi)[tan^(-1)x]...

The integral `I=int_(0)^(100pi)[tan^(-1)x]dx` (where, `[.]` represents the greatest integer function) has the vlaue `K(pi)+ tan(p)` then value of `K + p` is equal to

A

101

B

99

C

`100pi`

D

`99pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{100\pi} \lfloor \tan^{-1} x \rfloor \, dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the behavior of \( \tan^{-1} x \) The function \( \tan^{-1} x \) is defined for \( x \geq 0 \) and approaches \( \frac{\pi}{2} \) as \( x \) approaches infinity. Specifically, we have: - \( \tan^{-1}(0) = 0 \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \tan^{-1}(+\infty) = \frac{\pi}{2} \) ### Step 2: Determine the intervals We need to analyze the function \( \lfloor \tan^{-1} x \rfloor \) over the interval \( [0, 100\pi] \). 1. For \( 0 \leq x < \tan(1) \) (approximately \( 1.5574 \)), \( \tan^{-1} x \) ranges from \( 0 \) to \( \tan^{-1}(1) \), so \( \lfloor \tan^{-1} x \rfloor = 0 \). 2. For \( \tan(1) \leq x < \tan\left(\frac{\pi}{2}\right) \) (which is not applicable since \( \tan^{-1} x \) never actually reaches \( \frac{\pi}{2} \)), \( \lfloor \tan^{-1} x \rfloor = 1 \) for \( x \) values greater than \( \tan(1) \). ### Step 3: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{\tan(1)} \lfloor \tan^{-1} x \rfloor \, dx + \int_{\tan(1)}^{100\pi} \lfloor \tan^{-1} x \rfloor \, dx \] ### Step 4: Evaluate the first integral For the first part: \[ \int_{0}^{\tan(1)} \lfloor \tan^{-1} x \rfloor \, dx = \int_{0}^{\tan(1)} 0 \, dx = 0 \] ### Step 5: Evaluate the second integral For the second part: \[ \int_{\tan(1)}^{100\pi} \lfloor \tan^{-1} x \rfloor \, dx = \int_{\tan(1)}^{100\pi} 1 \, dx = [x]_{\tan(1)}^{100\pi} = 100\pi - \tan(1) \] ### Step 6: Combine results Thus, we have: \[ I = 0 + (100\pi - \tan(1)) = 100\pi - \tan(1) \] ### Step 7: Relate to the given form The problem states that \( I = K\pi + \tan(p) \). We can equate: \[ 100\pi - \tan(1) = K\pi + \tan(p) \] From this, we can see: - \( K = 100 \) - \( \tan(p) = -\tan(1) \) implies \( p = -1 \) (since \( \tan(-\theta) = -\tan(\theta) \)) ### Step 8: Find \( K + p \) Now, we compute: \[ K + p = 100 - 1 = 99 \] ### Final Answer Thus, the value of \( K + p \) is \( \boxed{99} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

int_(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest integer function)

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function