Home
Class 12
MATHS
Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[...

Let `A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)]`. If `AB=I`, where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

A

2

B

`(3)/(7)`

C

`(10)/(3)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all elements of matrix B given that \( AB = I \), where \( I \) is the identity matrix of order 3. Here are the steps to find the solution: ### Step 1: Write down matrices A and B Given: \[ A = \begin{pmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -k & 14k & 7k \\ 0 & 1 & 0 \\ k & -4k & -2k \end{pmatrix} \] ### Step 2: Calculate the product \( AB \) We need to compute the product \( AB \): \[ AB = A \cdot B = \begin{pmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -k & 14k & 7k \\ 0 & 1 & 0 \\ k & -4k & -2k \end{pmatrix} \] Calculating each element of the resulting matrix: - **Element (1,1)**: \[ 2 \cdot (-k) + 0 \cdot 0 + 7 \cdot k = -2k + 7k = 5k \] - **Element (1,2)**: \[ 2 \cdot 14k + 0 \cdot 1 + 7 \cdot (-4k) = 28k - 28k = 0 \] - **Element (1,3)**: \[ 2 \cdot 7k + 0 \cdot 0 + 7 \cdot (-2k) = 14k - 14k = 0 \] - **Element (2,1)**: \[ 0 \cdot (-k) + 1 \cdot 0 + 0 \cdot k = 0 \] - **Element (2,2)**: \[ 0 \cdot 14k + 1 \cdot 1 + 0 \cdot (-4k) = 1 \] - **Element (2,3)**: \[ 0 \cdot 7k + 1 \cdot 0 + 0 \cdot (-2k) = 0 \] - **Element (3,1)**: \[ 1 \cdot (-k) + (-2) \cdot 0 + 1 \cdot k = -k + k = 0 \] - **Element (3,2)**: \[ 1 \cdot 14k + (-2) \cdot 1 + 1 \cdot (-4k) = 14k - 2 - 4k = 10k - 2 \] - **Element (3,3)**: \[ 1 \cdot 7k + (-2) \cdot 0 + 1 \cdot (-2k) = 7k - 2k = 5k \] Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 5k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 10k - 2 & 5k \end{pmatrix} \] ### Step 3: Set \( AB \) equal to the identity matrix \( I \) We know that \( AB = I \): \[ AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] From this, we can set up the following equations: 1. \( 5k = 1 \) 2. \( 10k - 2 = 0 \) 3. \( 5k = 1 \) ### Step 4: Solve for \( k \) From the first equation: \[ 5k = 1 \implies k = \frac{1}{5} \] ### Step 5: Calculate the sum of all elements of matrix B Now, substituting \( k = \frac{1}{5} \) into matrix B: \[ B = \begin{pmatrix} -\frac{1}{5} & 14 \cdot \frac{1}{5} & 7 \cdot \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & -4 \cdot \frac{1}{5} & -2 \cdot \frac{1}{5} \end{pmatrix} \] \[ = \begin{pmatrix} -\frac{1}{5} & \frac{14}{5} & \frac{7}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & -\frac{4}{5} & -\frac{2}{5} \end{pmatrix} \] Now, we calculate the sum of all elements of matrix B: \[ \text{Sum} = -\frac{1}{5} + \frac{14}{5} + \frac{7}{5} + 0 + 1 + 0 + \frac{1}{5} - \frac{4}{5} - \frac{2}{5} \] \[ = (-\frac{1}{5} + \frac{1}{5}) + (\frac{14}{5} + \frac{7}{5} - \frac{4}{5} - \frac{2}{5}) + 1 \] \[ = 0 + \frac{15}{5} + 1 = 3 + 1 = 4 \] ### Final Answer The sum of all elements of matrix B is \( 4 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

If A is square matrix of order 3 matrix, |A| != 0 and |3A|=k|A| , then write the value of k .

If X+Y=[(5,2),(0,9)] and X-Y=[(3, 6), (0,-1)] and X=[(k,k),(0,k)] , then k =

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

If A^(k)=0 (null matrix) for some value of k, then l+A+A^(2)+…A^(k-1) is equal to

If A^(k)=0 (null matrix) for some value of k, then l+A+A^(2)+…A^(k-1) is equal to

Let A be a square matrix of order 3xx3 , then |k A| is equal to(A) k|A| (B) k^2|A| (C) k^3|A| (D) 3k |A|