Home
Class 12
MATHS
Let A=[(cos alpha,sin alpha),(-sinalpha,...

Let `A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)]` and matrix B is defined such that `B=A+3A^(2)+3A^(3)+A^(4).` If `|B|=8` then the number of values of `alpha` in `[0, 10pi]` is

A

10

B

12

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices and their determinants step by step. ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 2: Calculate the Determinant of Matrix A The determinant of matrix \( A \) can be calculated using the formula for the determinant of a 2x2 matrix: \[ |A| = \cos \alpha \cdot \cos \alpha - (-\sin \alpha) \cdot \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1 \] ### Step 3: Define the Matrix B The matrix \( B \) is defined as: \[ B = A + 3A^2 + 3A^3 + A^4 \] We can factor out \( A \) from this expression: \[ B = A (1 + 3A + 3A^2 + A^3) \] ### Step 4: Recognize the Polynomial The expression \( 1 + 3A + 3A^2 + A^3 \) resembles the expansion of \( (A + I)^3 \) where \( I \) is the identity matrix. Thus: \[ B = A (I + A)^3 \] ### Step 5: Calculate the Determinant of Matrix B Using the property of determinants: \[ |B| = |A| \cdot |(I + A)^3| \] Since we already found that \( |A| = 1 \), we have: \[ |B| = |(I + A)^3| \] This simplifies to: \[ |B| = |I + A|^3 \] ### Step 6: Calculate the Determinant of \( I + A \) Now we calculate \( I + A \): \[ I + A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} 1 + \cos \alpha & \sin \alpha \\ -\sin \alpha & 1 + \cos \alpha \end{pmatrix} \] The determinant of \( I + A \) is: \[ |I + A| = (1 + \cos \alpha)(1 + \cos \alpha) - (-\sin \alpha)(\sin \alpha) = (1 + \cos \alpha)^2 + \sin^2 \alpha \] Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ |I + A| = (1 + \cos \alpha)^2 + (1 - \cos^2 \alpha) = 2 + 2\cos \alpha \] ### Step 7: Set Up the Equation Now we have: \[ |B| = |I + A|^3 = (2 + 2\cos \alpha)^3 \] Given that \( |B| = 8 \): \[ (2 + 2\cos \alpha)^3 = 8 \] Taking the cube root of both sides: \[ 2 + 2\cos \alpha = 2 \] This simplifies to: \[ 2\cos \alpha = 0 \implies \cos \alpha = 0 \] ### Step 8: Find Values of \( \alpha \) The cosine function equals zero at: \[ \alpha = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] In the interval \( [0, 10\pi] \), we need to find the integer values of \( n \): - For \( n = 0 \): \( \alpha = \frac{\pi}{2} \) - For \( n = 1 \): \( \alpha = \frac{3\pi}{2} \) - For \( n = 2 \): \( \alpha = \frac{5\pi}{2} \) - For \( n = 3 \): \( \alpha = \frac{7\pi}{2} \) - For \( n = 4 \): \( \alpha = \frac{9\pi}{2} \) - For \( n = 5 \): \( \alpha = \frac{11\pi}{2} \) - For \( n = 6 \): \( \alpha = \frac{13\pi}{2} \) - For \( n = 7 \): \( \alpha = \frac{15\pi}{2} \) - For \( n = 8 \): \( \alpha = \frac{17\pi}{2} \) - For \( n = 9 \): \( \alpha = \frac{19\pi}{2} \) Counting these values gives us a total of 10 values of \( \alpha \) in the interval \( [0, 10\pi] \). ### Final Answer The number of values of \( \alpha \) in the interval \( [0, 10\pi] \) is **10**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] is identity matrix, then write the value of alpha .

Let A=({:(cosalpha,-,sinalpha),(sinalpha,,cosalpha):}),(alphaepsilonR) such that A^(32)=({:(0,-1),(1,0):}) . Then a value of alpha is:

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If A=[[cos alpha,-sin alpha],[sin alpha,cos alpha]], then for what value of alpha is A an identity matrix?

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

If A=[[cosalpha,-sinalpha],[sinalpha,cosalpha]] , then A+A^(prime)=I , if the value of alpha is (A) pi/6 (b) pi/3 (c) pi (d) (3pi)/2

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)| and f(0)=0 . If the sum of all possible values of alpha is kpi for alpha in [0, 2pi] , then the value of k is equal to

If A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2) are the vertices of A B C , then as alpha varies, find the locus of its centroid.