Home
Class 12
MATHS
Find x and y if (x^4+2x i)-(3x^2+y i)=(3...

Find x and y if `(x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)`

A

`x=2, y=3`

B

`x=-2, y=(1)/(3)`

C

`x= pm 2 and y=3, (1)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 + 2yi)\), we will first simplify and rearrange the equation step by step. ### Step 1: Rearranging the equation We start with the equation: \[ (x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 + 2yi) \] Combine the terms on the right side: \[ (3 - 5i) + (1 + 2yi) = 4 - 5i + 2yi \] Now, rewrite the equation: \[ x^4 + 2xi - 3x^2 - yi = 4 - 5i + 2yi \] ### Step 2: Grouping real and imaginary parts Now, we can group the real and imaginary parts: \[ x^4 - 3x^2 + (2x - y)i = 4 + (2y - 5)i \] ### Step 3: Setting up equations From the equation, we can equate the real parts and the imaginary parts: 1. Real part: \[ x^4 - 3x^2 - 4 = 0 \] 2. Imaginary part: \[ 2x - y = 2y - 5 \] ### Step 4: Solving the imaginary part equation Rearranging the imaginary part equation: \[ 2x + 5 = 3y \quad \text{(Equation 1)} \] ### Step 5: Solving the real part equation Now, we solve the real part equation: \[ x^4 - 3x^2 - 4 = 0 \] Let \(u = x^2\), then the equation becomes: \[ u^2 - 3u - 4 = 0 \] ### Step 6: Factoring the quadratic Factoring the quadratic: \[ (u - 4)(u + 1) = 0 \] This gives us: \[ u = 4 \quad \text{or} \quad u = -1 \] Since \(u = x^2\), we have: \[ x^2 = 4 \quad \Rightarrow \quad x = \pm 2 \] (Note: \(x^2 = -1\) does not yield real solutions.) ### Step 7: Finding y for each x Now, we substitute \(x = 2\) and \(x = -2\) into Equation 1 to find \(y\). 1. For \(x = 2\): \[ 2(2) + 5 = 3y \implies 4 + 5 = 3y \implies 9 = 3y \implies y = 3 \] 2. For \(x = -2\): \[ 2(-2) + 5 = 3y \implies -4 + 5 = 3y \implies 1 = 3y \implies y = \frac{1}{3} \] ### Final Solution Thus, the solutions are: \[ (x, y) = (2, 3) \quad \text{and} \quad (-2, \frac{1}{3}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine real values of x and y for which each statement is true (x^(4) + 2x i)- (3x^(2) + yi)= (3-5i) + (1 + 2yi)

If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi) then the number of ordered pairs (x, y) is/are equal to {AA x,y in R and i^(2)=-1}

Find the real numbers x and y if (x-i y)(3+5i) is the conjugate of -6-24 i .

Find the real numbers x and y if (x-i y)(3+5i) is the conjugate of -6-24 i .

Find x and y if: (3/sqrt(5) x-5)+i2 sqrt (5) y= sqrt(2)

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Find the real numbers x and y , if (x-i y)(3+5i) is the conjugate of -6-24 i

Find the values of x and y : (i) x+3i=6-9iy (ii) (x+iy)-(3-2i)=5+i (iii) i=x+2yi (iv) 4x+i(x-y)=2-5i (v) (x+2iy)(2-i)^(2)=10(1-i)

Find the values of x and y if 2x+4iy = -i^(3)x-y+3

If 3x + y i= x + 2y , then 2x - y =