Home
Class 12
MATHS
If A=[(1,1,3),(5,2,6),(-2,-1,-3)], where...

If `A=[(1,1,3),(5,2,6),(-2,-1,-3)],` where `A^(x)=O` (where, O is a null matrix and `x lt 15, x in N)` then which of the following is true?

A

Greatest value of x is 13

B

Sum of the values of x is 102

C

Difference between the largest and the smallest value of x is 10

D

Number of values of x is 7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) and find the powers of \( A \) until we reach a null matrix. The matrix is given as: \[ A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] We need to find the smallest natural number \( x < 15 \) such that \( A^x = O \), where \( O \) is the null matrix. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating the elements: 1. First row, first column: \[ 1 \cdot 1 + 1 \cdot 5 + 3 \cdot (-2) = 1 + 5 - 6 = 0 \] 2. First row, second column: \[ 1 \cdot 1 + 1 \cdot 2 + 3 \cdot (-1) = 1 + 2 - 3 = 0 \] 3. First row, third column: \[ 1 \cdot 3 + 1 \cdot 6 + 3 \cdot (-3) = 3 + 6 - 9 = 0 \] 4. Second row, first column: \[ 5 \cdot 1 + 2 \cdot 5 + 6 \cdot (-2) = 5 + 10 - 12 = 3 \] 5. Second row, second column: \[ 5 \cdot 1 + 2 \cdot 2 + 6 \cdot (-1) = 5 + 4 - 6 = 3 \] 6. Second row, third column: \[ 5 \cdot 3 + 2 \cdot 6 + 6 \cdot (-3) = 15 + 12 - 18 = 9 \] 7. Third row, first column: \[ -2 \cdot 1 + -1 \cdot 5 + -3 \cdot (-2) = -2 - 5 + 6 = -1 \] 8. Third row, second column: \[ -2 \cdot 1 + -1 \cdot 2 + -3 \cdot (-1) = -2 - 2 + 3 = -1 \] 9. Third row, third column: \[ -2 \cdot 3 + -1 \cdot 6 + -3 \cdot (-3) = -6 - 6 + 9 = -3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating the elements: 1. First row, all columns will be \( 0 \). 2. Second row, first column: \[ 3 \cdot 1 + 3 \cdot 5 + 9 \cdot (-2) = 3 + 15 - 18 = 0 \] 3. Second row, second column: \[ 3 \cdot 1 + 3 \cdot 2 + 9 \cdot (-1) = 3 + 6 - 9 = 0 \] 4. Second row, third column: \[ 3 \cdot 3 + 3 \cdot 6 + 9 \cdot (-3) = 9 + 18 - 27 = 0 \] 5. Third row, first column: \[ -1 \cdot 1 + -1 \cdot 5 + -3 \cdot (-2) = -1 - 5 + 6 = 0 \] 6. Third row, second column: \[ -1 \cdot 1 + -1 \cdot 2 + -3 \cdot (-1) = -1 - 2 + 3 = 0 \] 7. Third row, third column: \[ -1 \cdot 3 + -1 \cdot 6 + -3 \cdot (-3) = -3 - 6 + 9 = 0 \] Thus, we have: \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O \] ### Step 3: Conclusion Since \( A^3 = O \), we can conclude that \( A^x = O \) for all \( x \geq 3 \) and \( x < 15 \). Therefore, the valid values of \( x \) are \( 3, 4, 5, \ldots, 14 \). The total number of valid values is \( 14 - 3 + 1 = 12 \). ### Final Answer The correct option is that the number of values of \( x \) is 12.
Promotional Banner

Similar Questions

Explore conceptually related problems

Given the set of data 1,1,2,2,2,3,3,x,y, where x and y represent two different integers. If the mode is 2, which of the following statements must be true?

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f(x)=(1)/(1-x), then which of the following is not true?

The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in N , is (where [dot] represents greatest integer function) then which of the following is correct a. n (b) 1 (c) 1/n (d) none of these

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

If the median of the scores 1,2,x,4,5("where " 1 lt 2 lt x lt 4 lt 5) is 3, then the mean of the scores is

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If P=[{:(,2,6),(,3,9):}] and Q=[{:(,3,x),(,y,2):}] . find x and y such that PQ=null matrix.