Home
Class 12
MATHS
The number of real solution of cot^(-1)s...

The number of real solution of `cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2)` is /are

A

0

B

1

C

2

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cot^{-1}(\sqrt{x(x+3)}) + \sin^{-1}(\sqrt{x^2 + 3x + 1}) = \frac{\pi}{2}, \] we can use the property of inverse trigonometric functions that states: \[ \cot^{-1}(y) + \tan^{-1}(y) = \frac{\pi}{2}. \] This implies that: \[ \cot^{-1}(\sqrt{x(x+3)}) + \tan^{-1}(\sqrt{x^2 + 3x + 1}) = \frac{\pi}{2}. \] From this, we can deduce that: \[ \sqrt{x(x+3)} = \sqrt{x^2 + 3x + 1}. \] Now, we will square both sides to eliminate the square roots: \[ x(x + 3) = x^2 + 3x + 1. \] Expanding the left side gives: \[ x^2 + 3x = x^2 + 3x + 1. \] Now, we can simplify this equation by subtracting \(x^2 + 3x\) from both sides: \[ 0 = 1. \] This is a contradiction, indicating that there are no values of \(x\) that satisfy the original equation. Therefore, the number of real solutions is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. zero b . one c . two d . infinite

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. z ero b. one c. two d. infinite

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of real solutions of sqrt(x^2-4x+3)+sqrt(x^2-9)=sqrt(4x^2-14x+6)

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is:

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is