Home
Class 12
MATHS
If x = 6 and y=-2 then x-2y=9. The contr...

If x = 6 and `y=-2` then `x-2y=9.` The contrapositive of this statement is

A

If `x-2y ne 9` then `xne 6 or y ne -2`

B

If `x-2y ne 9` then `x ne 6 and y ne -2`

C

If `x-2y =9` then `x=6 and y=-2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the contrapositive of the statement "If \( x = 6 \) and \( y = -2 \), then \( x - 2y = 9 \)", we will follow these steps: ### Step 1: Identify the Statements Let: - \( p \): \( x = 6 \) - \( q \): \( y = -2 \) - \( r \): \( x - 2y = 9 \) ### Step 2: Write the Original Statement The original statement can be expressed as: \[ p \land q \implies r \] This means "If \( p \) and \( q \) are true, then \( r \) is true." ### Step 3: Apply the Contrapositive Rule The contrapositive of a statement \( a \implies b \) is given by \( \neg b \implies \neg a \). In our case, we need to negate both \( r \) and \( p \land q \). ### Step 4: Negate the Conclusion Negating \( r \) gives us: \[ \neg r: x - 2y \neq 9 \] ### Step 5: Negate the Premise Negating \( p \land q \) gives us: \[ \neg (p \land q) = \neg p \lor \neg q \] Where: - \( \neg p: x \neq 6 \) - \( \neg q: y \neq -2 \) Thus, we have: \[ \neg (p \land q) = x \neq 6 \lor y \neq -2 \] ### Step 6: Combine the Negations Now we can combine our results: \[ \neg r \implies \neg (p \land q) \] This translates to: \[ x - 2y \neq 9 \implies (x \neq 6 \lor y \neq -2) \] ### Step 7: Write the Final Contrapositive Statement The contrapositive statement in words is: "If \( x - 2y \neq 9 \), then \( x \neq 6 \) or \( y \neq -2 \)." ### Final Answer The contrapositive of the statement is: "If \( x - 2y \neq 9 \), then \( x \neq 6 \) or \( y \neq -2 \)." ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=5 and y=−2, then x−2y=9. The contrapositive of this statement is/are

If x=5a n dy=-2t h e nx-2y=9. The contrapositive of this statement is A.If x-2y=9t h e nx=5a n dy=-2 B. If x-2y!=9t h e nx!=5a n dy!=-2 C. If x-2y!=9t h e nx!=5ory!=-2 D. If x-2y!=9t h e ne i t h e rx!=5a n dy!=-2

If x = 5 and y = -2 , then x -2y =9, the contrapositive of this proposition is

The contrapositive of 2x +3 =9 Rightarrow x ne 4 is

The contrapositive of 2x + 3y = 9 rArr x != 4 is

Write the converse, contradiction and contrapositive of the statement 'If x+3=9,then x=6.?

The regression equation of x on y is 9x-2y-38=0 . If mean of x series is 6, then mean of y series is

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0