Home
Class 12
MATHS
The integral I=int(e)^(e+1)(1+x^(2))/(1+...

The integral `I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx` satisfies

A

`I gt 2`

B

`I gt e`

C

`I lt 0`

D

`I lt1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{e}^{e+1} \frac{1 + x^2}{1 + x^3} \, dx \) and determine the inequalities it satisfies, we can follow these steps: ### Step 1: Analyze the integrand We start with the integrand \( \frac{1 + x^2}{1 + x^3} \). We want to compare this expression to 1. ### Step 2: Establish the inequality We know that for \( x \) in the interval \( [e, e+1] \): - \( x^2 < x^3 \) (since \( x > 1 \) in this interval) - Therefore, \( 1 + x^2 < 1 + x^3 \). This implies: \[ \frac{1 + x^2}{1 + x^3} < 1 \] ### Step 3: Integrate both sides Now, we can integrate both sides over the interval \( [e, e+1] \): \[ \int_{e}^{e+1} \frac{1 + x^2}{1 + x^3} \, dx < \int_{e}^{e+1} 1 \, dx \] ### Step 4: Calculate the right side The integral on the right side is straightforward: \[ \int_{e}^{e+1} 1 \, dx = [x]_{e}^{e+1} = (e + 1) - e = 1 \] ### Step 5: Conclude the inequality Thus, we have: \[ I < 1 \] ### Step 6: Verify the options Now, let's check the options given in the problem: - \( I > 2 \) (False) - \( I > e \) (False, since \( e \approx 2.718 \)) - \( I < 0 \) (False, since \( I \) is positive) - \( I > 1 \) (False, since \( I < 1 \)) The only valid conclusion we can draw is: \[ I < 1 \] ### Final Answer Thus, the integral \( I \) satisfies \( I < 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of integral int_(1)^(e) (log x)^(3)dx , is

Find the integral int(4e^(3x)+1)dx

int_(-1)^(1)e^(2x)dx

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

If the integral I=int_(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kpi)/(2), then (k)/(2) is equal to