Home
Class 12
MATHS
The volume of a tetrahedron determined b...

The volume of a tetrahedron determined by the vectors `veca, vecb, vecc` is `(3)/(4)` cubic units. The volume (in cubic units) of a tetrahedron determined by the vectors `3(veca xx vecb), 4(vecbxxc) and 5(vecc xx veca)` will be

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron determined by the vectors \(3(\vec{a} \times \vec{b})\), \(4(\vec{b} \times \vec{c})\), and \(5(\vec{c} \times \vec{a})\), we can follow these steps: ### Step 1: Understand the Volume of a Tetrahedron The volume \(V\) of a tetrahedron formed by vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) can be calculated using the formula: \[ V = \frac{1}{6} |\vec{u} \cdot (\vec{v} \times \vec{w})| \] ### Step 2: Define the New Vectors Let: \[ \vec{u} = 3(\vec{a} \times \vec{b}), \quad \vec{v} = 4(\vec{b} \times \vec{c}), \quad \vec{w} = 5(\vec{c} \times \vec{a}) \] ### Step 3: Calculate the Volume Using the volume formula: \[ V = \frac{1}{6} |\vec{u} \cdot (\vec{v} \times \vec{w})| \] Substituting the new vectors: \[ V = \frac{1}{6} |3(\vec{a} \times \vec{b}) \cdot (4(\vec{b} \times \vec{c}) \times 5(\vec{c} \times \vec{a})| \] ### Step 4: Simplify the Cross Product We can simplify the cross product: \[ \vec{v} \times \vec{w} = 4(\vec{b} \times \vec{c}) \times 5(\vec{c} \times \vec{a}) = 20((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})) \] Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \] we can rewrite: \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a} \] ### Step 5: Substitute Back into the Volume Formula Now substituting back: \[ V = \frac{1}{6} |3(\vec{a} \times \vec{b}) \cdot (20((\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a}))| \] ### Step 6: Factor Out Constants This simplifies to: \[ V = \frac{1}{6} \cdot 60 |(\vec{a} \times \vec{b}) \cdot ((\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a})| \] ### Step 7: Use Given Volume Information Given that the volume of the tetrahedron formed by \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) is \(\frac{3}{4}\) cubic units, we have: \[ \frac{1}{6} |\vec{a} \cdot (\vec{b} \times \vec{c})| = \frac{3}{4} \] Thus: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = \frac{3}{4} \cdot 6 = \frac{9}{2} \] ### Step 8: Substitute the Volume Expression Now substituting this back into our volume expression: \[ V = 10 \cdot \left(\frac{9}{2}\right) = 45 \] ### Final Calculation Thus the final volume of the tetrahedron determined by the vectors \(3(\vec{a} \times \vec{b})\), \(4(\vec{b} \times \vec{c})\), and \(5(\vec{c} \times \vec{a})\) is: \[ V = \frac{405}{4} = 101.25 \text{ cubic units} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the volume of the parallelepiped formed by the vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors veca+vecb, vecb+vecc and vecc + veca is equal to

Volume of parallelpiped formed by vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 sq. units.

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If [(veca,vecb,vecc)]=3 , then the volume (in cubic units) of the parallelopiped with 2veca+vecb,2vecb+vecc and 2vecc+veca as coterminous edges is

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is: