Home
Class 12
MATHS
If cos x=tany, cos y=tanz and cos z = ta...

If `cos x=tany, cos y=tanz and cos z = tanx`, then `sinx = 2sin theta` where `theta` is (where, `x,y, z, theta` are acuate angles)

A

`15^(@)`

B

`18^(@)`

C

`22(1^(@))/(2)`

D

`75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) such that \( \sin x = 2 \sin \theta \), given the relationships between \( x, y, z \) in terms of trigonometric functions. Let's break this down step by step. ### Step 1: Start with the given equations We are given: 1. \( \cos x = \tan y \) 2. \( \cos y = \tan z \) 3. \( \cos z = \tan x \) ### Step 2: Square the first equation From \( \cos x = \tan y \), we square both sides: \[ \cos^2 x = \tan^2 y \] ### Step 3: Use the identity for tangent Recall the identity \( \tan^2 y = \sec^2 y - 1 \): \[ \cos^2 x = \sec^2 y - 1 \] This implies: \[ \sec^2 y = \cos^2 x + 1 \] ### Step 4: Rewrite secant in terms of cosine Since \( \sec y = \frac{1}{\cos y} \), we can write: \[ \frac{1}{\cos^2 y} = \cos^2 x + 1 \] Taking the reciprocal gives us: \[ \cos^2 y = \frac{1}{\cos^2 x + 1} \] ### Step 5: Proceed with the second equation Now, using \( \cos y = \tan z \) and squaring both sides: \[ \cos^2 y = \tan^2 z \] Using \( \tan^2 z = \sec^2 z - 1 \): \[ \cos^2 y = \sec^2 z - 1 \] This implies: \[ \sec^2 z = \cos^2 y + 1 \] ### Step 6: Substitute for \( \cos^2 y \) Substituting \( \cos^2 y = \frac{1}{\cos^2 x + 1} \): \[ \sec^2 z = \frac{1}{\cos^2 x + 1} + 1 \] Taking the reciprocal gives: \[ \cos^2 z = \frac{1}{\sec^2 z} = \frac{\cos^2 x + 1}{2} \] ### Step 7: Use the third equation From \( \cos z = \tan x \): \[ \cos^2 z = \tan^2 x \] Using \( \tan^2 x = \sec^2 x - 1 \): \[ \cos^2 z = \sec^2 x - 1 \] ### Step 8: Equate the two expressions for \( \cos^2 z \) Now we have two expressions for \( \cos^2 z \): \[ \frac{\cos^2 x + 1}{2} = \sec^2 x - 1 \] ### Step 9: Solve for \( \cos^2 x \) Multiplying through by 2: \[ \cos^2 x + 1 = 2\sec^2 x - 2 \] Substituting \( \sec^2 x = \frac{1}{\cos^2 x} \): \[ \cos^2 x + 1 = \frac{2}{\cos^2 x} - 2 \] Multiplying through by \( \cos^2 x \): \[ \cos^4 x + \cos^2 x = 2 - 2\cos^2 x \] Rearranging gives: \[ \cos^4 x + 3\cos^2 x - 2 = 0 \] ### Step 10: Let \( u = \cos^2 x \) Let \( u = \cos^2 x \): \[ u^2 + 3u - 2 = 0 \] ### Step 11: Use the quadratic formula Using the quadratic formula: \[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{9 + 8}}{2} = \frac{-3 \pm \sqrt{17}}{2} \] Since \( u \) must be non-negative, we take: \[ u = \frac{-3 + \sqrt{17}}{2} \] ### Step 12: Find \( \sin x \) Since \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^2 x = 1 - u = 1 - \frac{-3 + \sqrt{17}}{2} = \frac{5 - \sqrt{17}}{2} \] Thus: \[ \sin x = \sqrt{\frac{5 - \sqrt{17}}{2}} \] ### Step 13: Relate to \( 2 \sin \theta \) We need to find \( \theta \) such that: \[ \sin x = 2 \sin \theta \] This implies: \[ \sin \theta = \frac{1}{2} \sin x \] ### Step 14: Determine \( \theta \) Using the known value \( \sin 18^\circ = \frac{1}{2} \), we conclude: \[ \theta = 18^\circ \] ### Final Answer Thus, the value of \( \theta \) is: \[ \theta = 18^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find theta , " if " sin 5 theta = cos 4 theta : where 5 theta and 4 theta are acute angles.

Find theta ; if sin(theta + 36^@) = cos theta ; where theta + 36^@ is an acute angle.

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

If cos2theta=sin4theta , where 2theta and 4theta are acute angles, find the value of theta .

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

Show that : x=a cos theta - b sin theta and y = a sin theta + b cos theta , represent a circle where theta is the parameter.

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is