Home
Class 12
MATHS
Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(...

Let `I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C` (where, C is the constant of integration). If `f((pi)/(4))=1`, then the fundamental period of `y=f(x)` is

A

`(pi)/(4)`

B

`pi`

C

`2pi`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the fundamental period of the function \( y = f(x) \) given the integral equation and the condition \( f\left(\frac{\pi}{4}\right) = 1 \). ### Step 1: Solve the integral We start with the integral: \[ I = \int \frac{dx}{1 + 3\sin^2 x} \] To solve this integral, we can use the substitution \( \sin^2 x = 1 - \cos^2 x \) or directly apply the formula for integrals involving trigonometric functions. However, a more straightforward approach is to use the identity for \( \sin^2 x \): \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] This gives us: \[ 1 + 3\sin^2 x = 1 + \frac{3}{2} - \frac{3}{2}\cos(2x) = \frac{5}{2} - \frac{3}{2}\cos(2x) \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\frac{5}{2} - \frac{3}{2}\cos(2x)} = \frac{2}{5} \int \frac{dx}{1 - \frac{3}{5}\cos(2x)} \] ### Step 2: Use the integral formula The integral \( \int \frac{dx}{a - b\cos(kx)} \) has a known solution: \[ \int \frac{dx}{a - b\cos(kx)} = \frac{1}{\sqrt{a^2 - b^2}} \tan^{-1}\left(\frac{\sqrt{a^2 - b^2}}{a - b\cos(kx)}\right) + C \] In our case, \( a = \frac{5}{2} \) and \( b = \frac{3}{2} \), and \( k = 2 \). So we compute: \[ \sqrt{a^2 - b^2} = \sqrt{\left(\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \sqrt{\frac{25}{4} - \frac{9}{4}} = \sqrt{\frac{16}{4}} = 2 \] Thus, we have: \[ I = \frac{2}{5} \cdot \frac{1}{2} \tan^{-1}\left(\frac{2}{\frac{5}{2} - \frac{3}{2}\cos(2x)}\right) + C = \frac{1}{5} \tan^{-1}\left(\frac{2}{\frac{5}{2} - \frac{3}{2}\cos(2x)}\right) + C \] ### Step 3: Relate to the given equation We know from the problem statement that: \[ I = \frac{1}{2} \tan^{-1}(2f(x)) + C \] By comparing both expressions for \( I \), we can equate: \[ \frac{1}{5} \tan^{-1}\left(\frac{2}{\frac{5}{2} - \frac{3}{2}\cos(2x)}\right) = \frac{1}{2} \tan^{-1}(2f(x)) + C \] ### Step 4: Find \( f(x) \) From the equation above, we can solve for \( f(x) \). By rearranging, we find: \[ 2f(x) = \frac{2}{\frac{5}{2} - \frac{3}{2}\cos(2x)} \] Thus, \[ f(x) = \frac{1}{\frac{5}{2} - \frac{3}{2}\cos(2x)} = \frac{2}{5 - 3\cos(2x)} \] ### Step 5: Determine the fundamental period The function \( f(x) = \frac{2}{5 - 3\cos(2x)} \) is periodic. The cosine function \( \cos(2x) \) has a period of \( \frac{2\pi}{2} = \pi \). Therefore, the fundamental period of \( f(x) \) is: \[ \text{Fundamental period of } f(x) = \pi \] ### Conclusion The fundamental period of \( y = f(x) \) is: \[ \boxed{\pi} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

Let I=int(dx)/((cosx-sinx)^(2))=(1)/(f(x))+C (where, C is the constant of integration). If f((pi)/(3))=1-sqrt3 , then the number of solution(s) of f(x)=2020 in x in ((pi)/(2), pi) is/are

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

If I=int(1+x^(4))/((1-x^(4))^((3)/(2)))dx=(1)/(sqrt(f(x)))+C (where, C is the constant of integration) and f(2)=(-15)/(4) , then the value of 2f((1)/(sqrt2)) is

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)