Home
Class 12
MATHS
If I=int(0)^(16)(x^((1)/(4)))/(1+sqrtx)d...

If `I=int_(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m`, then `3k-m` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{16} \frac{x^{\frac{1}{4}}}{1 + \sqrt{x}} \, dx \) and express it in the form \( k + 4 \tan^{-1} m \), we will follow these steps: ### Step 1: Substitution Let \( x = t^4 \). Then, we differentiate to find \( dx \): \[ dx = 4t^3 \, dt \] Next, we change the limits of integration. When \( x = 0 \), \( t = 0 \), and when \( x = 16 \), \( t = 2 \) (since \( 16 = 2^4 \)). ### Step 2: Rewrite the Integral Substituting \( x = t^4 \) into the integral, we get: \[ I = \int_{0}^{2} \frac{(t^4)^{\frac{1}{4}}}{1 + \sqrt{t^4}} \cdot 4t^3 \, dt = \int_{0}^{2} \frac{t}{1 + t^2} \cdot 4t^3 \, dt \] This simplifies to: \[ I = 4 \int_{0}^{2} \frac{t^4}{1 + t^2} \, dt \] ### Step 3: Simplifying the Integral We can separate the integrand: \[ \frac{t^4}{1 + t^2} = \frac{t^4 - 1 + 1}{1 + t^2} = \frac{(t^2 - 1)(t^2 + 1)}{1 + t^2} + \frac{1}{1 + t^2} \] Thus, we can rewrite the integral: \[ I = 4 \left( \int_{0}^{2} (t^2 - 1) \, dt + \int_{0}^{2} \frac{1}{1 + t^2} \, dt \right) \] ### Step 4: Evaluate the Integrals 1. **First Integral**: \[ \int_{0}^{2} (t^2 - 1) \, dt = \left[ \frac{t^3}{3} - t \right]_{0}^{2} = \left( \frac{8}{3} - 2 \right) - (0 - 0) = \frac{8}{3} - \frac{6}{3} = \frac{2}{3} \] 2. **Second Integral**: \[ \int_{0}^{2} \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) \bigg|_{0}^{2} = \tan^{-1}(2) - \tan^{-1}(0) = \tan^{-1}(2) \] ### Step 5: Combine the Results Now substituting back into the expression for \( I \): \[ I = 4 \left( \frac{2}{3} + \tan^{-1}(2) \right) = \frac{8}{3} + 4 \tan^{-1}(2) \] ### Step 6: Identify \( k \) and \( m \) From the expression \( I = k + 4 \tan^{-1} m \): - We can identify \( k = \frac{8}{3} \) and \( m = 2 \). ### Step 7: Calculate \( 3k - m \) Now we calculate \( 3k - m \): \[ 3k - m = 3 \cdot \frac{8}{3} - 2 = 8 - 2 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

int_(0)^(1) (x)/(1-x)^(3//4)dx=

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

If int_(0)^(k) ( 1)/(9x^(2) + 1) dx = ( pi )/( 12) , then k is equal to

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then