Home
Class 12
CHEMISTRY
e.m.f. diagram for some ions is given as...

e.m.f. diagram for some ions is given as :
`FeO_(4)^(2-)overset(E^(@)=+2.20V)rarrFe^(3+)overset(E^(@)=+0.77V)rarrFe^(2+)overset(E^(@)=-0.445V)(rarr)Fe^(0)`
Datermine the value of `E_(FeO_(4)^(2-)//Fe^(2+))^(@)`.

A

1.84 V

B

1.42 V

C

1.3 V

D

2.0 V

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \), we will use the given standard electrode potentials and the relationships between the reactions. Here's a step-by-step solution: ### Step 1: Write the half-reactions and their standard potentials 1. **Half-reaction for \( FeO_4^{2-} \) to \( Fe^{3+} \)**: \[ FeO_4^{2-} + 3e^- \rightarrow Fe^{3+} \quad (E^{\circ} = +2.20 \, V) \] 2. **Half-reaction for \( Fe^{3+} \) to \( Fe^{2+} \)**: \[ Fe^{3+} + e^- \rightarrow Fe^{2+} \quad (E^{\circ} = +0.77 \, V) \] 3. **Half-reaction for \( Fe^{2+} \) to \( Fe^{0} \)**: \[ Fe^{2+} + 2e^- \rightarrow Fe^{0} \quad (E^{\circ} = -0.445 \, V) \] ### Step 2: Write the Gibbs free energy changes for each reaction The Gibbs free energy change (\( \Delta G \)) for each half-reaction can be expressed as: \[ \Delta G = -nFE^{\circ} \] where \( n \) is the number of moles of electrons transferred, \( F \) is Faraday's constant, and \( E^{\circ} \) is the standard electrode potential. 1. For the first reaction: \[ \Delta G_1 = -3F \cdot 2.20 \] 2. For the second reaction: \[ \Delta G_2 = -1F \cdot 0.77 \] 3. For the third reaction: \[ \Delta G_3 = -2F \cdot (-0.445) \] ### Step 3: Combine the reactions To find \( E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \), we need to combine the first two reactions: \[ FeO_4^{2-} + 3e^- \rightarrow Fe^{3+} \quad (1) \] \[ Fe^{3+} + e^- \rightarrow Fe^{2+} \quad (2) \] Adding these two reactions gives: \[ FeO_4^{2-} + 3e^- + e^- \rightarrow Fe^{2+} \] This simplifies to: \[ FeO_4^{2-} + 4e^- \rightarrow Fe^{2+} \] ### Step 4: Write the equation for the overall Gibbs free energy change The overall Gibbs free energy change for the combined reaction is: \[ \Delta G_{total} = \Delta G_1 + \Delta G_2 \] Substituting the values: \[ \Delta G_{total} = -3F \cdot 2.20 - 1F \cdot 0.77 \] ### Step 5: Relate to the standard potential for the combined reaction Now, we can relate this to the standard potential for the overall reaction: \[ \Delta G_{total} = -4F \cdot E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \] ### Step 6: Set the equations equal and solve for \( E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \) Setting the two expressions for \( \Delta G_{total} \) equal gives: \[ -3F \cdot 2.20 - 1F \cdot 0.77 = -4F \cdot E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \] Dividing through by \( -F \) (and canceling \( F \)): \[ 3 \cdot 2.20 + 0.77 = 4E_{FeO_4^{2-} // Fe^{2+}}^{\circ} \] Calculating the left side: \[ 6.60 + 0.77 = 7.37 \] Thus: \[ 4E_{FeO_4^{2-} // Fe^{2+}}^{\circ} = 7.37 \] Dividing by 4: \[ E_{FeO_4^{2-} // Fe^{2+}}^{\circ} = \frac{7.37}{4} = 1.8425 \, V \approx 1.84 \, V \] ### Final Answer: \[ E_{FeO_4^{2-} // Fe^{2+}}^{\circ} = 1.84 \, V \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If E_(Fe^(3+)//Fe)^(@) and E_(Fe^(2+)//Fe)^(@) are -0.36 V and 0.439 V respectively, then value of E_(Fe^(3+)//Fe^(2+))^(@) is

Given the standard oxidation potentials Fe overset(+0.4V)rarr Fe^(2+) (aq.) overset(-0.8V)rarr Fe^(3+) (aq.) Fe overset(+0.9V)rarr Fe(OH)_(2) overset(0.6V)rarr Fe(OH)_(3) It is easier to oxidise Fe^(2+) " to " Fe^(3+)in

{:(Given Fe^(+2)+2e^(-)toFe(s),,,,E^(@)=-0.447V),(Fe^(+2)toFe^(+3)+e^(-),,,,E^(@)=-0.771V):} Find E^(@) for the reaction Fe^(+3)+3e^(-)toFe(s)

What is the standard reducing potential (E^(@)) for Fe^(3+)to Fe ? (Given that Fe^(2+)+2e^(-)rightarrowFe, E_(Fe^(2+)//Fe^(@)) =-0.47V Fe^(3+) + e^(-)to Fe^(2+) , E_(Fe^(3+)//Fe^(2+))^(@)= +0.77V

If E^(c-)._(Fe^(3+)|Fe) and E^(c-)._(Fe^(2+)|Fe) are =-0.36 V and -0.439V , respectively, then the value of E^(c-)._(Fe^(3+)|Fe^(2+))

If E^(c-)._(Fe^(3+)|Fe) and E^(c-)._(Fe^(2+)|Fe) are =-0.36 V and -0.439V , respectively, then the value of E^(c-)._(Fe^(3+)|Fe^(2+))

Find out the compounds that will disproportionate in their aqueous solution. (I)ClO_(4)^(-)overst(+0.36V)rarr ClO_(3)^(-) overset(+0.33V)rarr ClO_(2) overset(+0.66V)rarr OC l^(-)overset(+0.40V)rarr(1)/(2)Cl_(2)overset(+1.36)rarr Cl^(-) (II)MnO_(4)^(-)overset(+0.56)rarrMnO_(4)^(2-)overset(+2.22V)rarrMnO_(2)overset(+0.95V)rarrMn^(3+)overset(+1.55)rarrMn^(2+)overset((-0.19)V)rarrMn

Given standard E^(c-): Fe^(3+)+3e^(-)rarrFe," "E^(c-)=-0.036 Fe^(2+)+2e^(-)rarr Fe," "E^(c-)=-0.440V The E^(c-) of Fe^(3+)+e^(-) rarr Fe^(2+) is

For the reduction of NO_(3)^(c-) ion in an aqueous solution, E^(c-) is +0.96V , the values of E^(c-) for some metal ions are given below : i.V^(2+)(aq)+2e^(-)rarr V, " "E^(c-)=-1.19V ii. Fe^(3+)(aq)+3e^(-) rarr Fe, " "E^(c-)=-0.04V iii. Au^(3+)(aq)+3e^(-) rarr Au, " "E^(c-)=+1.40V iv. Hg^(2+)(aq)+2e^(-) rarr Hg, " "E^(c-)=+0.86V The pair (s) of metals that is // are oxidized by NO_(3)^(c-) in aqueous solution is // are

For the reduction of NO_(3)^(c-) ion in an aqueous solution, E^(c-) is +0.96V , the values of E^(c-) for some metal ions are given below : i.V^(2+)(aq)+2e^(-)rarr V, " "E^(c-)=-1.19V ii. Fe^(3+)(aq)+3e^(-) rarr Fe, " "E^(c-)=-0.04V iii. Au^(3+)(aq)+3e^(-) rarr Au, " "E^(c-)=+1.40V iv. Hg^(2+)(aq)+2e^(-) rarr Hg, " "E^(c-)=+0.86V The pair (s) of metals that is // are oxidized by NO_(3)^(c-) in aqueous solution is // are