Home
Class 12
MATHS
y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1...

`y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1`

A

`(-2)/(1+x^(2))` for all x

B

`(2)/(1+x^(2))` for all `|x| lt 1`

C

`(2)/(1+x^(2))` for all `|x| gt 1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Draw the graph of y=sin^(-1)((2x)/(1+x^(2)))

Sketch for the curve y = sin^(-1)( (2x)/( 1 + x^2))

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),0ltxlt1, prove that (dy)/ (dx)="4/(1+x^2)

Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

If y= sin^(-1)((2x)/(1+x^2)) + sec^(-1)((1+x^2)/(1-x^2)) , prove that (dy)/(dx)=4/(1+x^2) .

If y= sin^(-1)((2x)/(x^(2)+1)) +sec^(-1)((1+x^(2))/(1-x^(2))) , prove that (dy)/(dx)=(4)/(1+x^(2)) .

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

Statement I Derivative of sin^(-1)((2x)/(1+x^(2)))w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) is 1 for 0ltxlt1. sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2))) for -1lexle1