Home
Class 12
MATHS
The compound statement (prarr ~q)vv(p^^q...

The compound statement `(prarr ~q)vv(p^^q)` is logically equivalent to

A

`phArr q`

B

`p^^q`

C

Tautology

D

Contradication

Text Solution

AI Generated Solution

The correct Answer is:
To determine the logical equivalence of the compound statement \((p \rightarrow \neg q) \lor (p \land q)\), we will construct a truth table and analyze the results step by step. ### Step 1: Set Up the Truth Table We will create a truth table with the following columns: - \(P\) - \(Q\) - \(\neg Q\) (negation of \(Q\)) - \(P \rightarrow \neg Q\) (implication) - \(P \land Q\) (conjunction) - \((P \rightarrow \neg Q) \lor (P \land Q)\) (disjunction) ### Step 2: Fill in the Values for \(P\) and \(Q\) The possible truth values for \(P\) and \(Q\) are: - True (T) - False (F) Thus, we will have the following combinations: 1. \(P = T, Q = T\) 2. \(P = T, Q = F\) 3. \(P = F, Q = T\) 4. \(P = F, Q = F\) ### Step 3: Calculate \(\neg Q\) - If \(Q = T\), then \(\neg Q = F\) - If \(Q = F\), then \(\neg Q = T\) So, the values for \(\neg Q\) will be: 1. \(F\) 2. \(T\) 3. \(F\) 4. \(T\) ### Step 4: Calculate \(P \rightarrow \neg Q\) The implication \(P \rightarrow \neg Q\) is defined as: - True unless \(P\) is true and \(\neg Q\) is false. Calculating this: 1. \(T \rightarrow F = F\) 2. \(T \rightarrow T = T\) 3. \(F \rightarrow F = T\) 4. \(F \rightarrow T = T\) So, the values for \(P \rightarrow \neg Q\) will be: 1. \(F\) 2. \(T\) 3. \(T\) 4. \(T\) ### Step 5: Calculate \(P \land Q\) The conjunction \(P \land Q\) is true only if both \(P\) and \(Q\) are true: 1. \(T \land T = T\) 2. \(T \land F = F\) 3. \(F \land T = F\) 4. \(F \land F = F\) So, the values for \(P \land Q\) will be: 1. \(T\) 2. \(F\) 3. \(F\) 4. \(F\) ### Step 6: Calculate \((P \rightarrow \neg Q) \lor (P \land Q)\) Now we take the disjunction of the previous two results: 1. \(F \lor T = T\) 2. \(T \lor F = T\) 3. \(T \lor F = T\) 4. \(T \lor F = T\) So, the final values for \((P \rightarrow \neg Q) \lor (P \land Q)\) will be: 1. \(T\) 2. \(T\) 3. \(T\) 4. \(T\) ### Conclusion Since all entries in the final column are true, the compound statement \((p \rightarrow \neg q) \lor (p \land q)\) is a tautology. Therefore, it is logically equivalent to **True**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The compound statement (prarrq)vv (p^^~q) is logically equivalent to

(~pvv~q) is logically equivalent to

p to q is logically equivalent to

The compound statement (phArr q)vv(p hArr ~q) is logically equivalent to

(~(pvvq))vv(~p^^q) is logically equivalent to

p ^^ ( q ^^ r) is logically equivalent to

Show that the compound statements (pvvq)^^~p and ~ p^^q are logically equivalent.

The negation of the compound propositions p harr ~q is logically equivalent to

The proposition ~(p vv ~q) vv ~(p vv q) is logically equivalent to

Using truth table show that - (p vv q) vv (~ p ^^ q ) is logically equivalent to ~ p.