Home
Class 12
MATHS
A line 4x+y=1 through the point A(2,-7) ...

A line `4x+y=1` through the point `A(2,-7)` meets the line `B C` whose equation os `3x=4y+1=0` at the point `Bdot` Find the equation to the line `A C` so that `A B=A Cdot`

A

`-(519)/(52)`

B

`(519)/(52)`

C

`-(519)/(89)`

D

`(519)/(89)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A line 4x+y=1 passes through the point A(2,-7) and meets line BC at B whose equation is 3x -4y +1=0 , the equation of line AC such that AB=AC is (a) 52x +89y +519=0(b) 52x +89y-519=0 c) 82x +52y+519=0 (d) 89x +52y -519=0

A line 4x+y=1 passes through the point A(2,-7) and meets line BC at B whose equation is 3x -4y +1=0 , the equation of line AC such that AB=AC is (a) 52x +89y +519=0(b) 52x +89y-519=0 c) 82x +52y+519=0 (d) 89x +52y -519=0

A line 4x+y=1 passes through the point A(2,-7) and meets line BC at B whose equation is 3x -4y +1=0 , the equation of line AC such that AB=AC is (a) 52x +89y +519=0(b) 52x +89y-519=0 c) 82x +52y+519=0 (d) 89x +52y -519=0

A straight line through the point A (-2,-3) cuts the line x+3y=9 and x+y+1=0 at B and C respectively. If AB.AC =20 then equation of the possible line is

A line through point P(4, 3) meets x-axis at point A and the y-axis at point B. If BP is double of PA, find the equation of AB.

A Straight line drawn through the point A(2,1) making an angle pi//4 with positive x-axis intersects another line x+2y+1=0 in the point Bdot Find length A B .

Find the equation of a line passing through the point (-1,0) and perpendicular to the line x+5y=4 .

Find the equation of a line passes through the points (3,4) and parallel to the line x+5y=1 .

A line L passing through the point (2, 1) intersects the curve 4x^2+y^2-x+4y-2=0 at the point Aa n dB . If the lines joining the origin and the points A ,B are such that the coordinate axes are the bisectors between them, then find the equation of line Ldot

Find the equation of a line passes through the point (-2,1) and perpendicular to the line 3x+y=5 .