Home
Class 12
MATHS
If e(1) and e(2) are the eccentricities ...

If `e_(1) and e_(2)` are the eccentricities of the ellipse `(x^(2))/(18)+(y^(2))/(4)=1` and the hyperbola `(x^(2))/(9)-(y^(2))/(4)=1` respectively and `(e_(1), e_(2))` is a point on the ellipse `15x^(2)+3y^(2)=k`, then the value of k is equal to

A

16

B

17

C

15

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the eccentricities of the given ellipse and hyperbola, and then use these values to find the constant \( k \) for the ellipse described by the equation \( 15x^2 + 3y^2 = k \). ### Step 1: Find the eccentricity \( e_1 \) of the ellipse The equation of the ellipse is given as: \[ \frac{x^2}{18} + \frac{y^2}{4} = 1 \] From this, we identify: - \( a^2 = 18 \) (where \( a \) is the semi-major axis) - \( b^2 = 4 \) (where \( b \) is the semi-minor axis) The formula for the eccentricity \( e \) of an ellipse is: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values: \[ e_1 = \sqrt{1 - \frac{4}{18}} = \sqrt{1 - \frac{2}{9}} = \sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{3} \] ### Step 2: Find the eccentricity \( e_2 \) of the hyperbola The equation of the hyperbola is given as: \[ \frac{x^2}{9} - \frac{y^2}{4} = 1 \] From this, we identify: - \( a^2 = 9 \) - \( b^2 = 4 \) The formula for the eccentricity \( e \) of a hyperbola is: \[ e = \sqrt{1 + \frac{b^2}{a^2}} \] Substituting the values: \[ e_2 = \sqrt{1 + \frac{4}{9}} = \sqrt{1 + \frac{4}{9}} = \sqrt{\frac{13}{9}} = \frac{\sqrt{13}}{3} \] ### Step 3: Substitute \( (e_1, e_2) \) into the ellipse equation We need to check if the point \( (e_1, e_2) = \left(\frac{\sqrt{7}}{3}, \frac{\sqrt{13}}{3}\right) \) satisfies the equation \( 15x^2 + 3y^2 = k \). Substituting \( x = e_1 \) and \( y = e_2 \): \[ 15\left(\frac{\sqrt{7}}{3}\right)^2 + 3\left(\frac{\sqrt{13}}{3}\right)^2 = k \] Calculating each term: \[ 15\left(\frac{7}{9}\right) + 3\left(\frac{13}{9}\right) = k \] This simplifies to: \[ \frac{105}{9} + \frac{39}{9} = k \] Combining the fractions: \[ k = \frac{105 + 39}{9} = \frac{144}{9} = 16 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of te ellipse (x^(2))/(16) + (y^(2))/(4) = 1 is _______

The eccentricity of the ellipse (x^2)/25+(y^2)/9=1 is ,

If e_1a n d\ e_2 are respectively the eccentricities of the ellipse (x^2)/(18)+(y^2)/4=1 and the hyperbola (x^2)/9-(y^2)/4=1, then write the value of 2e_1^ 2+e_2^ 2dot

If e and e' are the eccentricities of the ellipse 5x^(2) + 9 y^(2) = 45 and the hyperbola 5x^(2) - 4y^(2) = 45 respectively , then ee' is equal to

If e_(1)ande_(2) be the eccentricities of the ellipses (x^(2))/(a^(2))+(y^(2))/(b^(2))=1and(x^(2))/(a^(2))+(4y^(2))/(b^(2))=1 respectively then prove that 3=4e_(2)^(2)-e_(1)^(2) .

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

The eccentricity of the ellipse x^(2)+4y^(2)+8y-2x+1=0 , is

If e_(1) and e_(2) represent the eccentricity of the curves 6x^(2) - 9y^(2) = 144 and 9x^(2) - 16y^(2) = 144 respectively . Then (1)/(e_(1)^(2)) + (1)/(e_(2)^(2)) is equal to

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then

Eccentricity of the ellipse 4x^2+y^2-8x+2y+1=0 is