Home
Class 12
MATHS
Let veca=hati+2hatj+3hati, vecb=hati-hat...

Let `veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk`. If `vecc` lies in the plane of `veca and vecb`, then `(1)/(x)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \frac{1}{x} \) given that the vector \( \vec{c} \) lies in the plane of vectors \( \vec{a} \) and \( \vec{b} \). This means that the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar, which can be established using the determinant of a matrix formed by these vectors. ### Step-by-Step Solution: 1. **Identify the vectors**: - \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \vec{c} = (x-2)\hat{i} - (x-3)\hat{j} - \hat{k} \) 2. **Write the coefficients of the vectors**: - Coefficients of \( \vec{a} \): \( (1, 2, 3) \) - Coefficients of \( \vec{b} \): \( (1, -1, 2) \) - Coefficients of \( \vec{c} \): \( (x-2, -(x-3), -1) \) 3. **Set up the determinant**: The condition for coplanarity is given by the determinant: \[ \begin{vmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ x-2 & -(x-3) & -1 \end{vmatrix} = 0 \] 4. **Calculate the determinant**: Expanding the determinant: \[ = 1 \cdot \begin{vmatrix} -1 & 2 \\ -(x-3) & -1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 2 \\ x-2 & -1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & -1 \\ x-2 & -(x-3) \end{vmatrix} \] - Calculate each of the 2x2 determinants: - \( \begin{vmatrix} -1 & 2 \\ -(x-3) & -1 \end{vmatrix} = -1 \cdot -1 - 2 \cdot -(x-3) = 1 + 2(x-3) = 2x - 5 \) - \( \begin{vmatrix} 1 & 2 \\ x-2 & -1 \end{vmatrix} = 1 \cdot -1 - 2 \cdot (x-2) = -1 - 2x + 4 = -2x + 3 \) - \( \begin{vmatrix} 1 & -1 \\ x-2 & -(x-3) \end{vmatrix} = 1 \cdot -(x-3) - (-1)(x-2) = -x + 3 + x - 2 = 1 \) - Substitute back into the determinant: \[ 1(2x - 5) - 2(-2x + 3) + 3(1) = 0 \] \[ 2x - 5 + 4x - 6 + 3 = 0 \] \[ 6x - 8 = 0 \] 5. **Solve for \( x \)**: \[ 6x = 8 \implies x = \frac{8}{6} = \frac{4}{3} \] 6. **Find \( \frac{1}{x} \)**: \[ \frac{1}{x} = \frac{1}{\frac{4}{3}} = \frac{3}{4} \] ### Final Answer: \[ \frac{1}{x} = \frac{3}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|