Home
Class 12
MATHS
If I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))...

If `I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))/(x)+C, (AA x gt0)` (where, C is the constant of integration) and `f(1)=-sqrt2`, then the value of `|f(sqrt3)|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \( I = \int \frac{dx}{x^2 \sqrt{1+x^2}} \) and relate it to the function \( f(x) \) given by the equation \( I = \frac{f(x)}{x} + C \), where \( C \) is a constant of integration. We also know that \( f(1) = -\sqrt{2} \), and we need to find \( |f(\sqrt{3})| \). ### Step-by-Step Solution: 1. **Evaluate the Integral**: We start with the integral: \[ I = \int \frac{dx}{x^2 \sqrt{1+x^2}} \] To simplify this integral, we can factor out \( x^2 \) from the square root in the denominator: \[ I = \int \frac{dx}{x^2 \sqrt{x^2(1+\frac{1}{x^2})}} = \int \frac{dx}{x^2 \cdot x \sqrt{1+\frac{1}{x^2}}} = \int \frac{dx}{x^3 \sqrt{1+\frac{1}{x^2}}} \] 2. **Substitution**: Let \( t = 1 + \frac{1}{x^2} \). Then, differentiating both sides gives: \[ dt = -\frac{2}{x^3} dx \quad \Rightarrow \quad dx = -\frac{x^3}{2} dt \] Substituting \( dx \) into the integral: \[ I = \int \frac{-\frac{x^3}{2} dt}{x^3 \sqrt{t}} = -\frac{1}{2} \int \frac{dt}{\sqrt{t}} = -\frac{1}{2} \cdot 2\sqrt{t} + C = -\sqrt{t} + C \] 3. **Back Substitution**: Now, substituting back for \( t \): \[ I = -\sqrt{1+\frac{1}{x^2}} + C = -\sqrt{\frac{x^2 + 1}{x^2}} + C = -\frac{\sqrt{x^2 + 1}}{x} + C \] 4. **Relate to \( f(x) \)**: From the problem, we have: \[ I = \frac{f(x)}{x} + C \] Therefore, we can equate: \[ -\frac{\sqrt{x^2 + 1}}{x} + C = \frac{f(x)}{x} + C \] This implies: \[ f(x) = -\sqrt{x^2 + 1} \] 5. **Evaluate \( f(1) \)**: We know \( f(1) = -\sqrt{1^2 + 1} = -\sqrt{2} \), which is consistent with the given condition. 6. **Find \( f(\sqrt{3}) \)**: Now we calculate \( f(\sqrt{3}) \): \[ f(\sqrt{3}) = -\sqrt{(\sqrt{3})^2 + 1} = -\sqrt{3 + 1} = -\sqrt{4} = -2 \] 7. **Calculate the Modulus**: Finally, we need to find \( |f(\sqrt{3})| \): \[ |f(\sqrt{3})| = |-2| = 2 \] ### Final Answer: The value of \( |f(\sqrt{3})| \) is \( 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int(1+x^(4))/((1-x^(4))^((3)/(2)))dx=(1)/(sqrt(f(x)))+C (where, C is the constant of integration) and f(2)=(-15)/(4) , then the value of 2f((1)/(sqrt2)) is

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is