Home
Class 12
MATHS
Let veca=2hati-hatj+3hatk, vecb=hati+hat...

Let `veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk` and non - zero vector `vecc` are such that `(veca xx vecb)xx vecc =veca xx(vecb xx vecc)`, then vector `vecc` may be

A

`4hati-2hatj+6hatk`

B

`4hati+2hatj+6hatk`

C

`hati+hatj-hatk`

D

`hati-4hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and the relationship between them. Let's break it down step by step. ### Step 1: Define the Vectors We are given: - \(\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}\) - \(\vec{b} = \hat{i} + \hat{j} - 4\hat{k}\) ### Step 2: Calculate the Cross Product \(\vec{a} \times \vec{b}\) To find \(\vec{a} \times \vec{b}\), we can use the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\). \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 1 & 1 & -4 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -1 & 3 \\ 1 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 3 \\ 1 & -4 \end{vmatrix} = (-1)(-4) - (3)(1) = 4 - 3 = 1\) 2. \(\begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} = (2)(-4) - (3)(1) = -8 - 3 = -11\) 3. \(\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-1)(1) = 2 + 1 = 3\) Now substituting back: \[ \vec{a} \times \vec{b} = \hat{i}(1) - \hat{j}(-11) + \hat{k}(3) = \hat{i} + 11\hat{j} + 3\hat{k} \] ### Step 3: Use the Given Relationship We have the relationship: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] Using the vector triple product identity, we can rewrite both sides: 1. Left Side: \((\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}\) 2. Right Side: \(\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\) Setting both expressions equal gives: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 4: Simplifying the Equation From the equation, we can cancel \((\vec{a} \cdot \vec{c}) \vec{b}\) from both sides: \[ -(\vec{b} \cdot \vec{c}) \vec{a} = -(\vec{a} \cdot \vec{b}) \vec{c} \] This simplifies to: \[ \vec{b} \cdot \vec{c} \vec{a} = \vec{a} \cdot \vec{b} \vec{c} \] ### Step 5: Conclude the Relationship This implies that \(\vec{c}\) is a scalar multiple of \(\vec{a}\): \[ \vec{c} = \lambda \vec{a} \] for some scalar \(\lambda\). ### Step 6: Identify the Correct Option Given the options, we need to find which vector is a scalar multiple of \(\vec{a}\). Since \(\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}\), we can check the options to find which one is a multiple of \(\vec{a}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .