Home
Class 12
MATHS
The inequality .^(n+1)C(6)-.^(n)C(4) gt ...

The inequality `.^(n+1)C_(6)-.^(n)C_(4) gt .^(n)C_(5)` holds true for all n greater than ________.

A

8

B

9

C

7

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \binom{n+1}{6} - \binom{n}{4} > \binom{n}{5} \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \binom{n+1}{6} - \binom{n}{4} > \binom{n}{5} \] ### Step 2: Use Pascal's Identity Using Pascal's identity, we know that: \[ \binom{n+1}{6} = \binom{n}{6} + \binom{n}{5} \] Thus, we can rewrite the left side: \[ \binom{n}{6} + \binom{n}{5} - \binom{n}{4} > \binom{n}{5} \] ### Step 3: Simplify the Inequality Now, we can simplify the inequality: \[ \binom{n}{6} + \binom{n}{5} - \binom{n}{4} - \binom{n}{5} > 0 \] This simplifies to: \[ \binom{n}{6} - \binom{n}{4} > 0 \] ### Step 4: Express the Binomial Coefficients We can express the binomial coefficients: \[ \binom{n}{6} = \frac{n!}{6!(n-6)!} \quad \text{and} \quad \binom{n}{4} = \frac{n!}{4!(n-4)!} \] ### Step 5: Set Up the Inequality Now we need to set up the inequality: \[ \frac{n!}{6!(n-6)!} > \frac{n!}{4!(n-4)!} \] We can cancel \( n! \) from both sides (assuming \( n \geq 6 \)): \[ \frac{1}{6!(n-6)!} > \frac{1}{4!(n-4)!} \] ### Step 6: Cross Multiply Cross multiplying gives us: \[ 4!(n-4)! > 6!(n-6)! \] This simplifies to: \[ 24(n-4)(n-5) > 720 \] ### Step 7: Solve the Inequality Dividing both sides by 24: \[ (n-4)(n-5) > 30 \] Expanding gives: \[ n^2 - 9n + 20 > 30 \] Rearranging gives: \[ n^2 - 9n - 10 > 0 \] ### Step 8: Factor the Quadratic Factoring the quadratic: \[ (n-10)(n+1) > 0 \] ### Step 9: Determine the Solution The roots of the equation are \( n = 10 \) and \( n = -1 \). The inequality \( (n-10)(n+1) > 0 \) holds true for: - \( n < -1 \) or \( n > 10 \) Since we are looking for \( n > 10 \), the solution is: \[ n > 10 \] ### Final Answer Thus, the inequality holds true for all \( n \) greater than **10**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

""^(n-1)C_3+""^(n-1)C_4 gt ""^(n)C_3 if

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

If ""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , then.

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

Find n if ""^(n)C_(4)=""^(n)C_(6)

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.