Home
Class 12
MATHS
The limit L=lim(nrarroo)Sigma(r=1)^(n)(n...

The limit `L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2))` satisfies

A

`(pi)/(L) lt 6`

B

`(pi)/(L) lt 2`

C

`(pi)/(L) gt 3`

D

`(pi)/(L)lt1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n}{n^2 + r^2} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n}{n^2 + r^2} \] We can factor out \( n^2 \) from the denominator: \[ L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n}{n^2(1 + \frac{r^2}{n^2})} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n(1 + \frac{r^2}{n^2})} \] ### Step 2: Change of Variables Let \( x = \frac{r}{n} \). As \( r \) goes from 1 to \( n \), \( x \) goes from \( \frac{1}{n} \) to 1. The sum can be approximated by a Riemann sum: \[ L = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n(1 + \left(\frac{r}{n}\right)^2)} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n(1 + x^2)} \] ### Step 3: Convert to Integral As \( n \to \infty \), the sum approaches the integral: \[ L = \int_{0}^{1} \frac{1}{1 + x^2} \, dx \] ### Step 4: Evaluate the Integral The integral \( \int \frac{1}{1 + x^2} \, dx \) is known to be: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C \] Thus, we evaluate: \[ L = \left[ \tan^{-1}(x) \right]_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Conclusion Therefore, the limit \( L \) is: \[ L = \frac{\pi}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b) , then a+b is equal to

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals