Home
Class 12
MATHS
The value of lim(xrarr0)(9ln (2-cos 25x)...

The value of `lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{9 \ln(2 - \cos(25x))}{5 \ln^2(\sin(3x) + 1)} \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions We can use the fact that \( \ln(1 + x) \approx x \) as \( x \to 0 \). Thus, we rewrite the logarithmic expressions: \[ \ln(2 - \cos(25x)) = \ln(1 + (1 - \cos(25x))) \approx 1 - \cos(25x) \] and \[ \ln(\sin(3x) + 1) = \ln(1 + \sin(3x)) \approx \sin(3x) \] ### Step 2: Substitute the approximations into the limit Substituting these approximations into the limit gives: \[ \lim_{x \to 0} \frac{9(1 - \cos(25x))}{5(\sin(3x))^2} \] ### Step 3: Use trigonometric limits We know that: \[ 1 - \cos(x) \approx \frac{x^2}{2} \quad \text{as } x \to 0 \] Thus, \[ 1 - \cos(25x) \approx \frac{(25x)^2}{2} = \frac{625x^2}{2} \] And for \( \sin(3x) \): \[ \sin(3x) \approx 3x \quad \text{as } x \to 0 \] So, \[ (\sin(3x))^2 \approx (3x)^2 = 9x^2 \] ### Step 4: Substitute back into the limit Now substituting these approximations back into the limit: \[ \lim_{x \to 0} \frac{9 \cdot \frac{625x^2}{2}}{5 \cdot 9x^2} = \lim_{x \to 0} \frac{9 \cdot 625x^2/2}{45x^2} \] ### Step 5: Simplify the limit The \( x^2 \) terms cancel out: \[ = \lim_{x \to 0} \frac{9 \cdot 625/2}{45} = \frac{5625/2}{45} = \frac{5625}{90} = 62.5 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{62.5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is