If `a_(1)^(2)+a_(2)^(2)+a_(3)^(2)=1, b_(1)^(2)+b_(2)^(2)+b_(3)^(2)=4, c_(1)^(2)+c_(2)^(2)+c_3^(2)=9, `
` a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)=0, a_(1)c_(1)+a_(2)c_(2)+a_(3)c_(3)=0, b_(1)c_(1)+b_(2)c_(2)+b_(3)c_(3)=0 and`
`A[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))]`, then `|A|^(4)` is equal to
If `a_(1)^(2)+a_(2)^(2)+a_(3)^(2)=1, b_(1)^(2)+b_(2)^(2)+b_(3)^(2)=4, c_(1)^(2)+c_(2)^(2)+c_3^(2)=9, `
` a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)=0, a_(1)c_(1)+a_(2)c_(2)+a_(3)c_(3)=0, b_(1)c_(1)+b_(2)c_(2)+b_(3)c_(3)=0 and`
`A[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))]`, then `|A|^(4)` is equal to
` a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)=0, a_(1)c_(1)+a_(2)c_(2)+a_(3)c_(3)=0, b_(1)c_(1)+b_(2)c_(2)+b_(3)c_(3)=0 and`
`A[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))]`, then `|A|^(4)` is equal to
A
36
B
49
C
1296
D
216
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( A \) given the conditions provided. Let's break it down step by step.
### Step 1: Define the Matrix \( A \)
The matrix \( A \) is defined as:
\[
A = \begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
\]
### Step 2: Use the Given Conditions
We have the following conditions:
1. \( a_1^2 + a_2^2 + a_3^2 = 1 \)
2. \( b_1^2 + b_2^2 + b_3^2 = 4 \)
3. \( c_1^2 + c_2^2 + c_3^2 = 9 \)
4. \( a_1b_1 + a_2b_2 + a_3b_3 = 0 \)
5. \( a_1c_1 + a_2c_2 + a_3c_3 = 0 \)
6. \( b_1c_1 + b_2c_2 + b_3c_3 = 0 \)
### Step 3: Calculate \( A^2 \)
To find \( A^2 \), we multiply the matrix \( A \) by itself:
\[
A^2 = A \cdot A = \begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
\begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
\]
Calculating the entries of \( A^2 \):
- The first row, first column:
\[
a_1^2 + a_2^2 + a_3^2 = 1
\]
- The first row, second column:
\[
a_1a_2 + a_2b_2 + a_3b_3 = 0 \quad (\text{given})
\]
- The first row, third column:
\[
a_1c_1 + a_2c_2 + a_3c_3 = 0 \quad (\text{given})
\]
Continuing this process for the other rows, we find:
\[
A^2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{pmatrix}
\]
### Step 4: Calculate the Determinant of \( A^2 \)
The determinant of a diagonal matrix is the product of its diagonal entries:
\[
|A^2| = 1 \cdot 4 \cdot 9 = 36
\]
### Step 5: Calculate \( |A|^4 \)
Since \( |A^2| = |A|^2 \), we have:
\[
|A|^2 = 36
\]
Taking the square root gives us:
\[
|A| = 6
\]
Now, we need \( |A|^4 \):
\[
|A|^4 = (|A|^2)^2 = 36^2 = 1296
\]
### Final Answer
Thus, the value of \( |A|^4 \) is:
\[
\boxed{1296}
\]
Similar Questions
Explore conceptually related problems
If |a_(1)|gt|a_(2)|+|a_(3)|,|b_(2)|gt|b_(1)|+|b_(3)| and |c_(2)|gt|c_(1)|+|c_(2)| then show that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|ne0.
The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is
If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is
If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is
Given a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3) , then the value of the determinant |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))| , is
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of k for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is "(a) -3 (b) 7/11 (c) -2 (d) 2"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is: "(a) 54 (b) 40 (c) -45 (d) -40"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is: "(a) 4 (b) 5 (c) 6 (d) 7 "
Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))
If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in
Recommended Questions
- If a(1)^(2)+a(2)^(2)+a(3)^(2)=1, b(1)^(2)+b(2)^(2)+b(3)^(2)=4, c(1)^(2...
Text Solution
|
- if quad /=[[a(1),b(1),c(1)a(2),b(2),c(2)a(3),b(3),c(3)]]
Text Solution
|
- if Delta=det[[a(1),b(1),c(1)a(2),b(2),c(2)a(3),b(3),c(3)]]
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))| =5, then the v...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))|!= 0|(a(1)+b(1)...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))|=Delta, then |(...
Text Solution
|
- Show that |[a(1),b(1),-c(1)],[-a(2),-b(2),c(2)],[a(3),b(3),-c(3)]|=|[a...
Text Solution
|
- The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...
Text Solution
|
- If a(1)^(2)+a(2)^(2)+a(3)^(2)=1, b(1)^(2)+b(2)^(2)+b(3)^(2)=4, c(1)^(2...
Text Solution
|