Home
Class 12
MATHS
Consider I(1)=int(10)^(20)(lnx)/(lnx+ln(...

Consider `I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx` and `I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx`. Then, the value of `(I_(1))/(I_(2))` is

A

10

B

2

C

1

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_1}{I_2} \). ### Step-by-Step Solution: 1. **Define the Integrals:** \[ I_1 = \int_{10}^{20} \frac{\ln x}{\ln x + \ln(30 - x)} \, dx \] \[ I_2 = \int_{20}^{30} \frac{\ln x}{\ln x + \ln(50 - x)} \, dx \] 2. **Using Symmetry in \( I_1 \):** We can use the property of integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] For \( I_1 \), we have: \[ I_1 = \int_{10}^{20} \frac{\ln(30 - x)}{\ln(30 - x) + \ln x} \, dx \] This is because \( \ln(30 - x) \) can be substituted for \( \ln x \) and vice versa. 3. **Adding the Two Forms of \( I_1 \):** Now, we add the two expressions for \( I_1 \): \[ 2I_1 = \int_{10}^{20} \left( \frac{\ln x}{\ln x + \ln(30 - x)} + \frac{\ln(30 - x)}{\ln(30 - x) + \ln x} \right) \, dx \] The sum of the fractions simplifies to: \[ 2I_1 = \int_{10}^{20} 1 \, dx \] 4. **Evaluate the Integral:** \[ 2I_1 = \int_{10}^{20} 1 \, dx = [x]_{10}^{20} = 20 - 10 = 10 \] Thus, \[ I_1 = \frac{10}{2} = 5 \] 5. **Using Symmetry in \( I_2 \):** Similarly, for \( I_2 \): \[ I_2 = \int_{20}^{30} \frac{\ln(50 - x)}{\ln(50 - x) + \ln x} \, dx \] Adding both forms of \( I_2 \): \[ 2I_2 = \int_{20}^{30} \left( \frac{\ln x}{\ln x + \ln(50 - x)} + \frac{\ln(50 - x)}{\ln(50 - x) + \ln x} \right) \, dx \] This simplifies to: \[ 2I_2 = \int_{20}^{30} 1 \, dx \] 6. **Evaluate the Integral:** \[ 2I_2 = \int_{20}^{30} 1 \, dx = [x]_{20}^{30} = 30 - 20 = 10 \] Thus, \[ I_2 = \frac{10}{2} = 5 \] 7. **Finding the Ratio:** Now, we can find the ratio: \[ \frac{I_1}{I_2} = \frac{5}{5} = 1 \] ### Final Answer: \[ \frac{I_1}{I_2} = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

int_(1)^(2) (dx)/(x(1+log x)^(2))

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

If I_(1)= int_(1)^(sin theta) (x)/(1+x^(2)) dx and I_(2) int_(1)^("cosec" theta) (1)/(x(x^(2+1)))dx then the value of |{:(I_(1),I_(1)^(2),I_(2)),(e^(I_(1)+I_(2)),I_(2)^(2),-1),(1,I_(1)^(2)+I_(2)^(2),-1):}| , is