Home
Class 12
MATHS
If the function f(x)=cos^(-1)(x^((3)/(2)...

If the function `f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1),` then the value of `|sqrt3f'((1)/(2))|` is equal to `("take "sqrt3=1.73)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( | \sqrt{3} f'(\frac{1}{2}) | \) for the function \( f(x) = \cos^{-1} \left( x^{\frac{3}{2}} - \sqrt{1 - x - x^2 + x^3} \right) \) where \( 0 < x < 1 \). ### Step 1: Simplify the function \( f(x) \) Given: \[ f(x) = \cos^{-1} \left( x^{\frac{3}{2}} - \sqrt{1 - x - x^2 + x^3} \right) \] First, we simplify the expression inside the cosine inverse. We can rewrite \( x^{\frac{3}{2}} \) as \( x \sqrt{x} \). Next, we simplify \( \sqrt{1 - x - x^2 + x^3} \): \[ 1 - x - x^2 + x^3 = (1 - x)(1 + x + x^2) \] Thus, \[ \sqrt{1 - x - x^2 + x^3} = \sqrt{(1 - x)(1 + x + x^2)} \] Now, we can express \( f(x) \) as: \[ f(x) = \cos^{-1} \left( x \sqrt{x} - \sqrt{(1 - x)(1 + x + x^2)} \right) \] ### Step 2: Use the identity for cosine inverse Using the identity: \[ \cos^{-1}(A) + \cos^{-1}(B) = \cos^{-1}(AB - \sqrt{(1 - A^2)(1 - B^2)}) \] we can express \( f(x) \) as: \[ f(x) = \cos^{-1}(x) + \cos^{-1}(\sqrt{x}) \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = -\frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}} \] This simplifies to: \[ f'(x) = -\frac{1}{\sqrt{1 - x^2}} - \frac{1}{2\sqrt{x(1 - x)}} \] ### Step 4: Evaluate \( f'(\frac{1}{2}) \) Now we substitute \( x = \frac{1}{2} \): \[ f'(\frac{1}{2}) = -\frac{1}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} - \frac{1}{2\sqrt{\frac{1}{2}(1 - \frac{1}{2})}} \] Calculating each term: \[ -\frac{1}{\sqrt{1 - \frac{1}{4}}} = -\frac{1}{\sqrt{\frac{3}{4}}} = -\frac{2}{\sqrt{3}} \] And for the second term: \[ -\frac{1}{2\sqrt{\frac{1}{2} \cdot \frac{1}{2}}} = -\frac{1}{2 \cdot \frac{1}{2}} = -1 \] Thus, \[ f'(\frac{1}{2}) = -\frac{2}{\sqrt{3}} - 1 \] ### Step 5: Calculate \( | \sqrt{3} f'(\frac{1}{2}) | \) Now we calculate: \[ | \sqrt{3} f'(\frac{1}{2}) | = | \sqrt{3} \left( -\frac{2}{\sqrt{3}} - 1 \right) | \] This simplifies to: \[ | -2 - \sqrt{3} | = 2 + \sqrt{3} \] Substituting \( \sqrt{3} = 1.73 \): \[ 2 + 1.73 = 3.73 \] ### Final Answer Thus, the value of \( | \sqrt{3} f'(\frac{1}{2}) | \) is: \[ \boxed{3.73} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

The range of the function f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3))) x in R is

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal to

The domain of the function f(x)=sqrt(-log_.3 (x-1))/(sqrt(x^2+2x+8)) is

x^2+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

If I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))/(x)+C, (AA x gt0) (where, C is the constant of integration) and f(1)=-sqrt2 , then the value of |f(sqrt3)| is