Home
Class 12
PHYSICS
Two bodies of 6kg and 4kg masses have th...

Two bodies of `6kg` and `4kg` masses have their velocity `5hati - 2 hat j + 10 hat k` and `10hat i - 2 hat j + 5 hat k` respectively. Then, the velocity of their centre of mass is

A

`5hati+2hatj-8hatk`

B

`7hati+2hatj-8hatk`

C

`7hati-2hatj+8hatk`

D

`5hati-2hatj+8hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the velocity of the center of mass of two bodies with given masses and velocities, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the masses and velocities:** - Mass of body 1, \( m_1 = 6 \, \text{kg} \) - Mass of body 2, \( m_2 = 4 \, \text{kg} \) - Velocity of body 1, \( \vec{v_1} = 5 \hat{i} - 2 \hat{j} + 10 \hat{k} \) - Velocity of body 2, \( \vec{v_2} = 10 \hat{i} - 2 \hat{j} + 5 \hat{k} \) 2. **Use the formula for the velocity of the center of mass:** \[ \vec{v_{com}} = \frac{m_1 \vec{v_1} + m_2 \vec{v_2}}{m_1 + m_2} \] 3. **Calculate the total mass:** \[ m_1 + m_2 = 6 + 4 = 10 \, \text{kg} \] 4. **Calculate the x-component of the center of mass velocity:** \[ v_{com_x} = \frac{m_1 v_{1x} + m_2 v_{2x}}{m_1 + m_2} \] - Here, \( v_{1x} = 5 \) and \( v_{2x} = 10 \) \[ v_{com_x} = \frac{6 \cdot 5 + 4 \cdot 10}{10} = \frac{30 + 40}{10} = \frac{70}{10} = 7 \, \hat{i} \] 5. **Calculate the y-component of the center of mass velocity:** \[ v_{com_y} = \frac{m_1 v_{1y} + m_2 v_{2y}}{m_1 + m_2} \] - Here, \( v_{1y} = -2 \) and \( v_{2y} = -2 \) \[ v_{com_y} = \frac{6 \cdot (-2) + 4 \cdot (-2)}{10} = \frac{-12 - 8}{10} = \frac{-20}{10} = -2 \, \hat{j} \] 6. **Calculate the z-component of the center of mass velocity:** \[ v_{com_z} = \frac{m_1 v_{1z} + m_2 v_{2z}}{m_1 + m_2} \] - Here, \( v_{1z} = 10 \) and \( v_{2z} = 5 \) \[ v_{com_z} = \frac{6 \cdot 10 + 4 \cdot 5}{10} = \frac{60 + 20}{10} = \frac{80}{10} = 8 \, \hat{k} \] 7. **Combine the components to find the total velocity of the center of mass:** \[ \vec{v_{com}} = v_{com_x} + v_{com_y} + v_{com_z} = 7 \hat{i} - 2 \hat{j} + 8 \hat{k} \] ### Final Answer: The velocity of the center of mass is: \[ \vec{v_{com}} = 7 \hat{i} - 2 \hat{j} + 8 \hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(b) Two bodies of masses 10kg and 2 kg are moving with velocities 2hat(i)-7hat(j)+3hat(k) and -10hat(i)+35hat(j)-3hat(k)m//s respectively. Find the velocity of the centre of mass.

Two bodies of mass 1 kg and 3 kg have position vectors hat i+ 2 hat j + hat k and - 3 hat i- 2 hat j+ hat k , respectively. The centre of mass of this system has a position vector.

Two bodies of mass 1 kg and 3 kg have position vectors hat i+ 2 hat j + hat k and - 3 hat i- 2 hat j+ hat k , respectively. The centre of mass of this system has a position vector.

The position vectors of the vectices A, B, C of a triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k respectively. The length of the bisector AD of the angle angle BAC where D is on the line segment BC, is

Dot product of a vector with hat i+ hat j-3 hat k ,\ hat i+3 hat j-2 hat k\ a n d\ 2 hat i+ hat j+4 hat k are 0, 5 and 8 respectively. Find the vector.

Dot product of a vector with hat i+ hat j-3 hat k , hat i+3 hat j-2 hat k and 2 hat i+ hat j+4 hat k are 0,5 and 8 respectively. Find the vector.

Prove that the points hat i- hat j ,4 hat i-3 hat j+ hat k and 2 hat i-4 hat j+5 hat k are the vertices of a right angled triangle.

Prove that the points hat i- hat j ,4 hat i-3 hat j+ hat k and 2 hat i-4 hat j+5 hat k are the vertices of a right angled triangle.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

Show that the points A, B and C with position vectors, veca=3 hat i-4 hat j-4 hat k , vecb=2 hat i- hat j+ hat k and vecc= hat i-3 hat j-5 hat k respectively form the vertices of a right angled triangle.