Home
Class 12
CHEMISTRY
For the reaction. A(l)rarr 2B(g) Del...

For the reaction.
`A(l)rarr 2B(g)`
`DeltaU="2.1 k Cal, "DeltaS="20 Cal K"^(-1)" at 300K`
Hence `DeltaG" in kcal "` is ?

A

2.7

B

`-2.7`

C

5.4

D

1.35

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\Delta G\) for the reaction \(A(l) \rightarrow 2B(g)\), we can use the following steps: ### Step 1: Understand the given data - \(\Delta U = 2.1 \, \text{kcal}\) - \(\Delta S = 20 \, \text{Cal K}^{-1}\) - Temperature \(T = 300 \, \text{K}\) ### Step 2: Calculate \(\Delta N_g\) \(\Delta N_g\) is the change in the number of moles of gas during the reaction. Here, we have: - Products: 2 moles of \(B(g)\) - Reactants: 0 moles of \(A(l)\) Thus, \[ \Delta N_g = 2 - 0 = 2 \] ### Step 3: Convert \(\Delta S\) to kcal Since \(\Delta S\) is given in calories, we need to convert it to kilocalories: \[ \Delta S = 20 \, \text{Cal K}^{-1} = 20 \times 10^{-3} \, \text{kcal K}^{-1} = 0.02 \, \text{kcal K}^{-1} \] ### Step 4: Calculate \(\Delta H\) using the relation Using the relation \(\Delta H = \Delta U + \Delta N_g \cdot R \cdot T\): - \(R = 2 \times 10^{-3} \, \text{kcal K}^{-1}\) (as we are using kcal) - Now, substituting the values: \[ \Delta H = \Delta U + \Delta N_g \cdot R \cdot T \] \[ \Delta H = 2.1 \, \text{kcal} + (2) \cdot (2 \times 10^{-3} \, \text{kcal K}^{-1}) \cdot (300 \, \text{K}) \] \[ \Delta H = 2.1 \, \text{kcal} + (2 \cdot 0.002 \cdot 300) \] \[ \Delta H = 2.1 \, \text{kcal} + 1.2 \, \text{kcal} = 3.3 \, \text{kcal} \] ### Step 5: Calculate \(\Delta G\) using the Gibbs Helmholtz equation Using the equation: \[ \Delta G = \Delta H - T \Delta S \] Substituting the values: \[ \Delta G = 3.3 \, \text{kcal} - (300 \, \text{K} \cdot 0.02 \, \text{kcal K}^{-1}) \] \[ \Delta G = 3.3 \, \text{kcal} - 6 \, \text{kcal} \] \[ \Delta G = -2.7 \, \text{kcal} \] ### Final Answer: \(\Delta G = -2.7 \, \text{kcal}\) ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction: X_(2)O_(4)(l)rarr2XO_(2)(g) DeltaU=2.1kcal , DeltaS =20 "cal" K^(-1) "at" 300 K Hence DeltaG is

For the reaction: X_(2)O_(4)(l)rarr2XO_(2)(g) DeltaU=2.1 cal , DeltaS =20 "cal" K^(-1) "at" 300 K Hence DeltaG is

For the reaction X_(2)O_(4(l)) rarr 2XO_(2(g)), Delta U= 2.1 "kcal", Delta S= 20 "cal " K^(-1) at 300K, Hence Delta G is

For the reaction, X_(2)O_(4)(l)rarr2XO_(2)(g),DeltaE=2.1Kcal , DeltaS=20cal//K at 300K . Hence DeltaG is

For the reaction, X_(2)O_(4)(l)rarr2XO_(2)(g) , DeltaE=3.1Kcal , DeltaS=30cal//K at 300K . Hence DeltaG is

For the reaction :- N_(2)O_(4(g))hArr2NO_(2(g)) DeltaU=2.0Kcal,DeltaS=50CalK^(-1)at300K calculate DeltaG ?

If for a reaction A(s) rarr 2B(g), deltaU+ 1.2 kcal and deltaS=40 cal K^(-1) at 400K then deltaG for the reaction will be ( R=2 cal mol^(-1)K^(-1)

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )

A _ ("(l)") to 2 B _ ( "(g)") Delta U = 2. 1 kcal , Delta S = 20 Cal/k, T = 300 K. Find Delta G ( in kcal )