Home
Class 12
CHEMISTRY
The ratio of acid strength of HOCN and H...

The ratio of acid strength of `HOCN` and `HCN` is about
Given `K_(a)` of `HOCN=1.2xx10^(-4) and K_(a)" of "HCN "=4.2 xx10^(-10)`

A

`535:1`

B

`1:535`

C

`2.86xx10^(5):1`

D

`2.86xx10^(4):1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of acid strength of HOCN and HCN, we will use the given dissociation constants (Ka) for both acids. The acid strength can be compared using the formula: \[ \text{Acid Strength Ratio} = \left( \frac{K_{a, \text{HOCN}}}{K_{a, \text{HCN}}} \right)^{1/2} \] ### Step-by-Step Solution: 1. **Identify the given values:** - \( K_{a, \text{HOCN}} = 1.2 \times 10^{-4} \) - \( K_{a, \text{HCN}} = 4.2 \times 10^{-10} \) 2. **Set up the ratio of the acid dissociation constants:** \[ \frac{K_{a, \text{HOCN}}}{K_{a, \text{HCN}}} = \frac{1.2 \times 10^{-4}}{4.2 \times 10^{-10}} \] 3. **Perform the division:** - First, divide the coefficients: \[ \frac{1.2}{4.2} \approx 0.2857 \] - Next, subtract the exponents: \[ 10^{-4} \div 10^{-10} = 10^{(-4) - (-10)} = 10^{6} \] - Combine the results: \[ \frac{K_{a, \text{HOCN}}}{K_{a, \text{HCN}}} \approx 0.2857 \times 10^{6} = 2.857 \times 10^{5} \] 4. **Take the square root of the ratio:** \[ \left( \frac{K_{a, \text{HOCN}}}{K_{a, \text{HCN}}} \right)^{1/2} \approx (2.857 \times 10^{5})^{1/2} \approx 535.0 \] 5. **Express the final ratio:** - The ratio of the acid strengths of HOCN to HCN is approximately: \[ 535 : 1 \] ### Final Answer: The ratio of acid strength of HOCN to HCN is approximately **535:1**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the pH of 0.01 M solution of NH_(4)CN. The dissociation constants K_(a) for HCN=6.2xx10^(-10)and K_(b) for NH_(3)=1.6xx10^(-5).

Calculate the pH of 0.01 M solution of NH_(4)CN. The dissociation constants K_(a) for HCN=6.2xx10^(-10)and K_(b) for NH_(3)=1.6xx10^(-5).

Calculate the solubility of AgCN in a buffer solution of pH 3.0 . Assume that no cyano complex is formed K_(sp) AgCN = 2.2 xx 10^(-16), K_(a) HCN = 6.2 xx 10^(-10) .

Equal volumes of 0.02M AgNO_(3) and 0.01M HCN are mixed. Calculate [Ag^(o+)] in solution after attaining equilibrium. K_(a) HCN = 6.2 xx 10^(-10) and K_(sp) of AgCN = 2.2 xx 10^(-16) .

Calculate percentage hydrolysis in 0.003 M aqueous solution K_(a) for HOCN = 3.35 xx 10^(-4) and K_(w) = 10^(-14)

Calculate the solubility of CaF_(2) in a solution buffered at pH = 3.0. K_(a) for HF = 6.3 xx 10^(-4) and K_(sp) of CaF_(2) = 3.45 xx 10^(-11) .

Calculate [H^(o+)] in a soluton that is 0.1M HCOOH and 0.1 M HOCN. K_(a)(HCOOH) = 1.8 xx 10^(-4), K_(a) (HoCN) = 3.3 xx 10^(-4) .

Calculate the solubility og AgCN in a buffer solution of pH 3.00 K_(sp(AgCN)) = 1.2 xx10^(-18) and K_(a(HCN)) = 4.8 xx 10^(10) M^(2) .

Calculate the pH of a solution of ammonium acetate (Given : K_a= 1.78 xx 10 ^(-5) ,K_b= 1.8 xx 10 ^(-5) and K_w = 1.8 xx 10^(-14))

Calculate the dergee of hydrolysis and pH of 0.02M ammonium cyanide (NH_(4)CN) at 298K . (K_(a) of HCN = 4.99 xx 10^(-9), K_(b) for NH_(4)OH = 1.77 xx 10^(-5))