Home
Class 12
PHYSICS
The moment of inertia of a body about a ...

The moment of inertia of a body about a given axis is `1.2 kg-m^(2)`. Initially, the body is at rest. In order to produce a ratational kinetic energy of `1500 J`, an angular acceleration of `25" rad"//s^(2)` must be applied about that axis for a duration of

A

4 s

B

2 s

C

8 s

D

10 s

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Moment of inertia of a body about a given axis is 1.5 kg m^(2) . Intially the body is at rest. In order to produce a rotational kinetic energy iof 1200 J, the angular acceleration of 20 rad/ s^(2) must be applied about the axis for a duration of

The moment of inertia of the body about an axis is 1.2 kg m^(2) . Initially the body is at rest. In order to produce a rotational kinetic energy of 1500J, an angualr acceleration of 25 rad/s^(2) must be applied about the axis for the duration of

Moment of inertia of a body about a given axis is 1.5 kg m^(2) . Initially the body is at rest. In order to produce a rotational kinetic energy of 1200 J, the angular acceleration of 20 rad//s^(2) must be applied about the axis for a duration of _________ (in sec).

The moment of inertia of a body about a given axis is 1.2 kg xx " metre"^(2) . Initially, the body is at rest. In order to produce a rotating kinetic energy of 1500 joules, an angular acceleration of 25 radian/ sec^(2) must be applied about that axis for a duration of

The moment of inertia of a body about a given axis is 1.2 kg m^(2) . Initially, the body is at rest. In order to produce a rotational KE of 1500 J , for how much duration, an acceleration of 25 rad s^(-2) must be applied about that axis ?

The moment of inertia of a body about a given axis is 1.2 kg m^(2) . Initially, the body is at rest. In order to produce a rotational KE of 1500 J , for how much duration, an acceleration of 25 rad s^(-2) must be applied about that axis ?

The moment of inertia of a body about a given axis of rotation depends upon :-

The moment of inertia of a solid cylinder about its axis is given by (1//2)MR^(2) . If this cylinder rolls without slipping the ratio of its rotational kinetic energy to its translational kinetic energy is -

Compute the torque acting on a wheel of moment of inertia 10kgm^(2) , moving with angular acceleration 5 rad s^(-2) .

Compute the torque acting on a wheel of moment of inertia 10kgm^(2) , moving with angular acceleration 5 rad s^(-2) .