Home
Class 12
PHYSICS
A particle of mass 1 g moving with a vel...

A particle of mass 1 g moving with a velocity `vecv_1=3hati-2hatj m s^(-1)` experiences a perfectly in elastic collision with another particle of mass 2 g and velocity `vecv_2=4hatj-6 hatk m s^(-1)`. The velocity of the particle is

A

`hati+2hatj-4hatk`

B

`hati-2hatj+4hatk`

C

`hati-2hatj-4hatk`

D

`hati+3.33hatj+4hatk`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A 120 g mass has a velocity vecv=2hati+5hatj m s^(-1) at a certain instant. Its kinetic energy is

Particle A of mass m_1 moving with velocity (sqrt3hati+hatj)ms^(-1) collides with another particle B of mass m_2 which is at rest initially. Let vec(V_1) and vec(V_2) be the velocities of particles A and B after collision respectively. If m_1 = 2m_2 and after collision vec(V_1) - (hati + sqrt3hatj)ms^(-1) , the angle between vec (V_1) and vec (V_2) is :

A particle of mass m_(1) = 4 kg moving at 6hatims^(-1) collides perfectly elastically with a particle of mass m_(2) = 2 moving at 3hati ms^(-1)

A partical of mass m moving with velocity 1m//s collides perfectly elastically with another particle of mass 2m . If the incident particle is deflected by 90^(circ) . The heavy mass will make and angle theta with the initial direction of m equal to:

A particle of mass m moving with a velocity (3hati+2hatj)ms^-1 collides with another body of mass M and finally moves with velocity (-2hati+hatj)ms^-1 . Then during the collision

A particle of mass 15 kg has an initial velocity vecv_(i) = hati - 2 hatjm//s . It collides with another body and the impact time is 0.1s, resulting in a velocity vecc_f = 6 hati + 4hatj + 5 hatk m//s after impact. The average force of impact on the particle is :

A particle of mass 2kg moving with a velocity 5hatim//s collides head-on with another particle of mass 3kg moving with a velocity -2hatim//s . After the collision the first particle has speed of 1.6m//s in negative x-direction, Find (a) velocity of the centre of mass after the collision, (b) velocity of the second particle after the collision. (c) coefficient of restitution.

A particle of mass 2kg moving with a velocity 5hatim//s collides head-on with another particle of mass 3kg moving with a velocity -2hatim//s . After the collision the first particle has speed of 1.6m//s in negative x-direction, Find (a) velocity of the centre of mass after the collision, (b) velocity of the second particle after the collision. (c) coefficient of restitution.

A particle is projected from ground with velocity 3hati + 4hatj m/s. Find range of the projectile :-

A body of mass 3 kg moving with a velocity (2hati+3hatj+3hatk) m/s collides with another body of mass 4 kg moving with a velocity (3hati+2hatj-3hatk) m/s. The two bodies stick together after collision. The velocity of the composite body is