To solve the problem step by step, we will use the principle of conservation of energy. The total mechanical energy (kinetic energy + potential energy) remains constant when a charged body moves in an electric field.
### Step 1: Understand the Given Data
- Mass of the body, \( m = 1 \, \text{g} = 1 \times 10^{-3} \, \text{kg} \)
- Charge of the body, \( q = 10^{-8} \, \text{C} \)
- Electric potential at point P, \( V_P = 600 \, \text{V} \)
- Electric potential at point Q, \( V_Q = 0 \, \text{V} \)
- Velocity at point Q, \( V_2 = 20 \, \text{cm/s} = 20 \times 10^{-2} \, \text{m/s} = 0.2 \, \text{m/s} \)
### Step 2: Write the Energy Conservation Equation
The conservation of energy states that the gain in kinetic energy is equal to the loss in potential energy. Therefore, we can write:
\[
\text{Gain in K.E.} = \text{Loss in P.E.}
\]
This can be expressed mathematically as:
\[
\frac{1}{2} m V_1^2 - \frac{1}{2} m V_2^2 = q V_P - q V_Q
\]
### Step 3: Substitute Known Values
Substituting the known values into the equation:
\[
\frac{1}{2} (1 \times 10^{-3}) V_1^2 - \frac{1}{2} (1 \times 10^{-3}) (0.2)^2 = (10^{-8})(600) - (10^{-8})(0)
\]
### Step 4: Simplify the Equation
This simplifies to:
\[
\frac{1}{2} (1 \times 10^{-3}) V_1^2 - \frac{1}{2} (1 \times 10^{-3}) (0.04) = 6 \times 10^{-6}
\]
Now, simplifying further:
\[
\frac{1}{2} (1 \times 10^{-3}) V_1^2 - 2 \times 10^{-5} = 6 \times 10^{-6}
\]
### Step 5: Rearranging the Equation
Rearranging gives:
\[
\frac{1}{2} (1 \times 10^{-3}) V_1^2 = 6 \times 10^{-6} + 2 \times 10^{-5}
\]
Calculating the right side:
\[
6 \times 10^{-6} + 2 \times 10^{-5} = 2.6 \times 10^{-5}
\]
So we have:
\[
\frac{1}{2} (1 \times 10^{-3}) V_1^2 = 2.6 \times 10^{-5}
\]
### Step 6: Solve for \( V_1^2 \)
Multiplying both sides by 2:
\[
(1 \times 10^{-3}) V_1^2 = 5.2 \times 10^{-5}
\]
Now, divide by \( 1 \times 10^{-3} \):
\[
V_1^2 = \frac{5.2 \times 10^{-5}}{1 \times 10^{-3}} = 5.2 \times 10^{-2}
\]
### Step 7: Take the Square Root
Taking the square root gives:
\[
V_1 = \sqrt{5.2 \times 10^{-2}} \approx 0.228 \, \text{m/s}
\]
### Final Answer
The velocity of the body at point P is approximately \( 0.228 \, \text{m/s} \).
---