Home
Class 12
PHYSICS
The radii of the two columne is U-tube a...

The radii of the two columne is U-tube are `r_(1)` and `r_(2)(gtr_(1))`. When a liquid of density `rho` (angle of contact is `0^@))` is filled in it, the level different of liquid in two arms is h. The surface tension of liquid is
`(g=` acceleration due to gravity)

A

`(rhoghr_1r_2)/(2(r_2-r_1))`

B

`hrhog(r_2-r_1)`

C

`(hrhog(r_2-r_1))/2`

D

`(hrhog)/(2(r_2-r_1))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The radii of the two columns is U-tube are r_(1) and r_(2)(r_(2)gtr_(1)) . When a liquid of density rho (angle of contact is 0^@)) is filled in it, the level different of liquid in two arms is h. The surface tension of liquid is (g= acceleration due to gravity)

In a U-tube the radii of two columns are respectively r_(1) and r_(2) and if a liquid of density d filled in it has level difference of h then the surface tension of the liquid is -

A capillary of the shape as shown is dipped in a liquid. Contact angle between the liquid and the capillary is 0^@ and effect of liquid inside the mexiscus is to be neglected. T is surface tension of the liquid, r is radius of the meniscus, g is acceleration due to gravity and rho is density of the liquid then height h in equilibrium is:

A beaker containing a liquid of density rho moves up with an acceleration a . The pressure due to the liquid at a depth h below the free surface of the liquid is.

A capillary tube of radius r is lowered into a liquid of surface tension T and density rho . Given angle of contact =0^(@) . What is the potential energy acquired by the liquid in the capillary?

Two holes are made at depths h and 2h from the top. A liquid of density rho and height h is filled over another liquid of density 2rho . Speeds of liquid ejecting from two holes are say v_(1) and v_(2) . If density of lower liquid is increased

The absolute pressure at a depth h below the surface of a liquid of density rho is [Given P_(a) = atmospheric pressure, g = acceleration due to gravity]

What is the height to which a liquid rises between two long parallel plates, a distance d apart ? (Surface tension of liquid is T and density is rho )

When a vertical capillary of length l with a sealed upper end was brought in contact with the surface of a liquid, the level of this liquid rose to the height h . The liquid density is rho , the inside diameter the capillary is d , the contact angle is theta , the atmospheric pressure is rho_(0) . Find the surface tension of the liquid. (Temperature in this process remains constant.)

When a vertical capillary of length with the sealed upper end was brought in contact with the surface of a liquid, the level of this liquid rose to the height h . The liquid density is rho , the inside diameter the capillary is d , the contact angle is theta , the atmospheric pressure is rho_(0) . Find the surface tension of the liquid. (Temperature this process remains constant.)