Home
Class 12
CHEMISTRY
Oxidising power of chlorine in aqueous s...

Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below
`(1)/(2)CL_(2)(g)overset((1)/(2)Delta_(diss)H^(Theta))(rarr)Cl(g)overset(DeltaH_(Eg)^(Theta))(rarr)`
`Cl^(-)(g)overset(Delta_(hyd)H^(Theta))(rarr)Cl^(-)(aq)`
The energy involved in the conversion of `(1)/(2)Cl_(2)(g)` to
`Cl^(-)(aq)`
(Using the data `Delta_(diss)H_(Cl_(2))^(Theta)=240KJ mol^(-1)`)
`Delta_(Eg)H_(Cl)^(Theta)=-349KJmol^(-1)` ,
`Delta_(Eg)H_(Cl)^(Theta)=-381KJmol^(-1)`) will be

A

`+152 kJ mol^(-1)`

B

`-610 kJ mol ^(-1)`

C

`850 kJ mol ^(-1)`

D

`+ 120 kJ mol ^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the energy involved in the conversion of \( \frac{1}{2}Cl_2(g) \) to \( Cl^-(aq) \), we will use the provided data and apply Hess's law. Here are the steps to solve the problem: ### Step 1: Write the Reaction Steps We need to break down the conversion of \( \frac{1}{2}Cl_2(g) \) to \( Cl^-(aq) \) into three steps: 1. Dissociation of \( Cl_2 \) into chlorine atoms. 2. Gaining an electron by chlorine atom to form chloride ion. 3. Hydration of chloride ion to form aqueous chloride ion. ### Step 2: Calculate the Enthalpy for Each Step 1. **Dissociation of \( \frac{1}{2}Cl_2(g) \)**: \[ \frac{1}{2}Cl_2(g) \rightarrow Cl(g) \] The enthalpy change for this step (\( \Delta H_1 \)) is given by: \[ \Delta H_1 = \frac{1}{2} \times \Delta H_{diss}(Cl_2) = \frac{1}{2} \times 240 \, \text{kJ/mol} = 120 \, \text{kJ/mol} \] 2. **Electron Gain Enthalpy**: \[ Cl(g) + e^- \rightarrow Cl^-(g) \] The enthalpy change for this step (\( \Delta H_2 \)) is given by: \[ \Delta H_2 = \Delta H_{Eg}(Cl) = -349 \, \text{kJ/mol} \] 3. **Hydration of Chloride Ion**: \[ Cl^-(g) \rightarrow Cl^-(aq) \] The enthalpy change for this step (\( \Delta H_3 \)) is given by: \[ \Delta H_3 = \Delta H_{hyd}(Cl^-) = -381 \, \text{kJ/mol} \] ### Step 3: Calculate Overall Enthalpy Change Using Hess's law, the overall enthalpy change (\( \Delta H \)) for the conversion from \( \frac{1}{2}Cl_2(g) \) to \( Cl^-(aq) \) is: \[ \Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 \] Substituting the values: \[ \Delta H = 120 \, \text{kJ/mol} - 349 \, \text{kJ/mol} - 381 \, \text{kJ/mol} \] Calculating this gives: \[ \Delta H = 120 - 349 - 381 = -610 \, \text{kJ/mol} \] ### Final Answer The energy involved in the conversion of \( \frac{1}{2}Cl_2(g) \) to \( Cl^-(aq) \) is \( -610 \, \text{kJ/mol} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

NH_(4)Cl+NaNO_(2) overset(Delta)toN_(2)uarr+NaCl+H_(2)O

NH_(4)Cl+NaNO_(2) overset(Delta)toN_(2)uarr+NaCl+H_(2)O

The product D of the reaction CH_(3)Cl overset( KCN) ( rarr) ( A) overset( H_(2) O) ( rarr) (B) overset( NH_(3))(rarr) ( C ) overset( Delta)( rarr) ( D ) is

Calculate Delta_(r)G^(c-) of the reaction : Ag^(o+)(aq)+Cl^(c-)(aq) rarr AgCl(s) Given :Delta_(f)G^(c-)._(AgCl)=-109kJ mol ^(-1) Delta_(f)G^(c-)_((Cl^(c-)))=-129k J mol ^(-1) Delta_(f)G^(c-)._((Ag^(o+)))=-77 kJ mol ^(-1)

Calculate P-Cl bond enthalpy P(s)+(3)/(2)Cl_(2)(g)rarr PCl_(3)(g) Given : Delta_(f)H(PCl_(3),g)=306kJ //mol DeltaH_("atomization")(P,s)=314kJ//mol , Delta_(r)H(Cl,g)=1231kJ//mol

For a demerization reaction , 2A (g) to A_2 (g) at 298 K, Delta U(Theta) = - 20 kJ"mol"^(-1), Delta S^(Theta) = - 30 JK^(-1) "mol"^(-1) , then the Delta G^(Theta) will be _________J.

Given Delta_(i)H^(Theta)(HCN) = 45.2 kJ mol^(-1) and Delta_(i)H^(Theta)(CH_(3)COOH) = 2.1 kJ mol^(-1) . Which one of the following facts is true?

Find DeltaH of the process NaOH(s) rarr NaOH(g) Given: Delta_(diss)H^(Theta)of O_(2) = 151 kJ mol^(-1) Delta_(diss)H^(Theta) of H_(2) = 435 kJ mol^(-1) Delta_(diss)H^(Theta) of O-H = 465 kJ mol^(-1) Delta_(diss)H^(Theta) of Na -O = 255 kJ mol^(-1) Delta_(soln)H^(Theta)of NaOH = - 46 kJ mol^(-1) Delta_(f)H^(Theta) of NaOH(s) =- 427 kJ mol^(-1) Delta_("sub")H^(Theta) of Na(s) = 109 kJ mol^(-1)

Consider the reaction: 4NH_(3)(g) +5O_(2)(g) rarr 4NO(g) +6H_(2)O(l) DeltaG^(Theta) =- 1010.5 kJ Calculate Delta_(f)G^(Theta) [NO(g)] if Delta_(f)G^(Theta) (NH_(3)) = -16.6 kJ mol^(-1) and Delta_(f)G^(Theta) [H_(2)O(l)] =- 237.2 kJ mol^(-1) .

Calculate DeltaG^(Theta) and the equilibrium constant for the cell reaction : Cl_(2)+2I^(-) to 2Cl^(-) +I_(2) Given that E^(Theta)(Cl_(2), Cl^(-))=1.36V, E^(Theta)(I_(2)I^(-))=0.536V