Home
Class 12
PHYSICS
A body is vibrating in simple harmonic m...

A body is vibrating in simple harmonic motion with an amplitude of 0.06 m and frequency of 15 Hz . The velocity and acceleration of body is

A

(a)`9.80 ms ^(-1) and 9.03 xx 10^(2) m s^(-2)`

B

(b)`8.90 ms ^(-1) and 8.21 xx10^(2) ms ^(-2)`

C

(c)`6.82 ms ^(-1) and 7.62 xx10^(2) ms ^(-2)`

D

(d)`5.65 ms ^(-1) and 5.32 xx10^(2) ms ^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of a body vibrating in simple harmonic motion (SHM) with an amplitude of 0.06 m and a frequency of 15 Hz, we need to calculate both the velocity and acceleration of the body. Here’s a step-by-step solution: ### Step 1: Calculate Angular Frequency (ω) The angular frequency (ω) can be calculated using the formula: \[ \omega = 2\pi f \] where \( f \) is the frequency. Given: - \( f = 15 \, \text{Hz} \) Substituting the value: \[ \omega = 2\pi \times 15 = 30\pi \, \text{rad/s} \] ### Step 2: Calculate Velocity (v) The maximum velocity in SHM can be calculated using the formula: \[ v = \omega A \] where \( A \) is the amplitude. Given: - \( A = 0.06 \, \text{m} \) Substituting the values: \[ v = (30\pi) \times 0.06 \] Calculating: \[ v = 30 \times \frac{22}{7} \times 0.06 \] \[ v = 30 \times \frac{22 \times 6}{700} = \frac{3960}{700} \approx 5.65 \, \text{m/s} \] ### Step 3: Calculate Acceleration (a) The maximum acceleration in SHM can be calculated using the formula: \[ a = \omega^2 A \] Substituting the values: \[ a = (30\pi)^2 \times 0.06 \] Calculating: \[ a = 900\pi^2 \times 0.06 \] \[ a = 900 \times \left(\frac{22}{7}\right)^2 \times 0.06 \] \[ a = 900 \times \frac{484}{49} \times 0.06 \] \[ a = \frac{900 \times 484 \times 6}{49 \times 100} = \frac{2906400}{4900} \approx 593.14 \, \text{m/s}^2 \] ### Final Results - **Velocity (v)**: \( 5.65 \, \text{m/s} \) - **Acceleration (a)**: \( 593.14 \, \text{m/s}^2 \) ### Conclusion Thus, the final answers are: - Velocity: \( 5.65 \, \text{m/s} \) - Acceleration: \( 593.14 \, \text{m/s}^2 \)
Promotional Banner