Home
Class 12
PHYSICS
A force vec F = 2 hat i + 3 hat j N is a...

A force `vec F = 2 hat i + 3 hat j N` is applied to an object that is pivoted about a fixed axle aligned along the `z` coordinate axis. If the force is applied at the point `vec r = 4 hat i + 5 hat j m`, (a) the magnitude of the net torque about the `z` and (b) the direction of the torque vector `tau`.

A

4

B

1

C

2

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the torque \(\vec{\tau}\) produced by the force \(\vec{F}\) applied at the position \(\vec{r}\) about the z-axis. The torque is defined as the cross product of the position vector \(\vec{r}\) and the force vector \(\vec{F}\). ### Given: - Force vector: \(\vec{F} = 2 \hat{i} + 3 \hat{j}\) N - Position vector: \(\vec{r} = 4 \hat{i} + 5 \hat{j}\) m ### Step 1: Calculate the Torque The torque \(\vec{\tau}\) is given by the formula: \[ \vec{\tau} = \vec{r} \times \vec{F} \] Substituting the values: \[ \vec{\tau} = (4 \hat{i} + 5 \hat{j}) \times (2 \hat{i} + 3 \hat{j}) \] ### Step 2: Use the Determinant Method To compute the cross product, we can use the determinant of a matrix: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & 0 \\ 2 & 3 & 0 \end{vmatrix} \] ### Step 3: Calculate the Determinant Calculating the determinant, we have: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 5 & 0 \\ 3 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 0 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 5 \\ 2 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 5 & 0 \\ 3 & 0 \end{vmatrix} = 5 \cdot 0 - 0 \cdot 3 = 0\) 2. \(\begin{vmatrix} 4 & 0 \\ 2 & 0 \end{vmatrix} = 4 \cdot 0 - 0 \cdot 2 = 0\) 3. \(\begin{vmatrix} 4 & 5 \\ 2 & 3 \end{vmatrix} = 4 \cdot 3 - 5 \cdot 2 = 12 - 10 = 2\) Now substituting back into the torque equation: \[ \vec{\tau} = 0 \hat{i} - 0 \hat{j} + 2 \hat{k} = 2 \hat{k} \] ### Step 4: Magnitude of the Torque The magnitude of the torque is given by: \[ |\vec{\tau}| = 2 \, \text{N m} \] ### Step 5: Direction of the Torque Vector The direction of the torque vector \(\vec{\tau}\) is along the positive z-axis, represented by \(\hat{k}\). ### Final Answers: (a) The magnitude of the net torque about the z-axis is \(2 \, \text{N m}\). (b) The direction of the torque vector \(\vec{\tau}\) is along the positive z-axis.
Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector along vec(A)= 2 hat i + 3 hat j is :

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

Find the resultant of vectors vec a= hat i- hat j+2 hat k and vec b= hat i+2 hat j-4 hat kdot Find the unit vector in the direction of the resultant vector.

If vec a= hat i+ hat j , vec b= hat j+ hat k , vec c= hat k+ hat i find the unit vector in the direction of vec a+ vec b+ vec cdot

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

A vector is given by vec (A) = 3 hat(i) + 4 hat(j) + 5 hat(k) . Find the magnitude of vec(A) , unit vector along vec(A) and angles made by vec(A) with coordinate axes.

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

A charged particle moves with velocity vec v = a hat i + d hat j in a magnetic field vec B = A hat i + D hat j. The force acting on the particle has magnitude F. Then,