Home
Class 12
PHYSICS
White light reflected at normal incidenc...

White light reflected at normal incidence from a soap film has minima at `6500Å` and maxima at `7500Å` in the visible region without minimum in between. If `mu` is `(5)/(3)` for the thin film, thickness of the film is

A

`7.40xx10^(-7)m`

B

`9.75xx10^(-5)mm`

C

`9.40xx10^(-7)cm`

D

`9.75xx10^(-4)mm`

Text Solution

AI Generated Solution

The correct Answer is:
To find the thickness of the soap film, we will use the conditions for constructive and destructive interference in thin films. Here’s the step-by-step solution: ### Step 1: Understand the Conditions for Minima and Maxima For a thin film, the conditions for maxima and minima are given by: - For maxima: \( 2 \mu t = (n + \frac{1}{2}) \lambda_{\text{max}} \) - For minima: \( 2 \mu t = n \lambda_{\text{min}} \) Where: - \( \mu \) is the refractive index of the film, - \( t \) is the thickness of the film, - \( n \) is an integer (order of interference), - \( \lambda_{\text{max}} \) and \( \lambda_{\text{min}} \) are the wavelengths of light corresponding to maxima and minima respectively. ### Step 2: Set Up the Equations From the problem: - \( \lambda_{\text{min}} = 6500 \, \text{Å} = 6500 \times 10^{-10} \, \text{m} \) - \( \lambda_{\text{max}} = 7500 \, \text{Å} = 7500 \times 10^{-10} \, \text{m} \) - \( \mu = \frac{5}{3} \) We can write the equations for maxima and minima: 1. \( 2 \mu t = (n + \frac{1}{2}) \lambda_{\text{max}} \) 2. \( 2 \mu t = n \lambda_{\text{min}} \) ### Step 3: Equate the Two Expressions Since both expressions are equal to \( 2 \mu t \), we can set them equal to each other: \[ (n + \frac{1}{2}) \lambda_{\text{max}} = n \lambda_{\text{min}} \] ### Step 4: Substitute the Values Substituting the values of \( \lambda_{\text{max}} \) and \( \lambda_{\text{min}} \): \[ (n + \frac{1}{2}) (7500 \times 10^{-10}) = n (6500 \times 10^{-10}) \] ### Step 5: Simplify the Equation Cancelling \( 10^{-10} \) from both sides: \[ (n + \frac{1}{2}) (7500) = n (6500) \] Expanding this gives: \[ 7500n + 3750 = 6500n \] ### Step 6: Solve for \( n \) Rearranging the equation: \[ 7500n - 6500n = -3750 \] \[ 1000n = -3750 \] \[ n = \frac{3750}{1000} = 3.75 \] ### Step 7: Use \( n \) to Find Thickness \( t \) Now we can use either equation to find \( t \). Let’s use the minima equation: \[ 2 \mu t = n \lambda_{\text{min}} \] Substituting \( \mu \) and \( n \): \[ 2 \left(\frac{5}{3}\right) t = 3.75 \times (6500 \times 10^{-10}) \] \[ \frac{10}{3} t = 3.75 \times 6500 \times 10^{-10} \] ### Step 8: Calculate \( t \) Calculating the right side: \[ t = \frac{3.75 \times 6500 \times 10^{-10} \times 3}{10} \] Calculating the numerical value: \[ t = \frac{24375 \times 10^{-10} \times 3}{10} = 7.3125 \times 10^{-7} \, \text{m} = 7.3125 \times 10^{-7} \, \text{m} \] ### Final Answer The thickness of the film is approximately: \[ t \approx 7.31 \times 10^{-7} \, \text{m} \]
Promotional Banner