Home
Class 12
PHYSICS
An electric charge +q moves with velocit...

An electric charge `+q` moves with velocity `vecv=3hati+4hatj+hatk`,in an electromagnetic field given by:
`vecE=3hati+hatj+2hatk` and `vecB=hati+hatj+3hatk`.The `y`-component of the force experienced by `+q` is:

A

-7q

B

5q

C

-3q

D

2q

Text Solution

AI Generated Solution

The correct Answer is:
To find the y-component of the force experienced by a charge \( +q \) moving in an electromagnetic field, we need to consider both the electric force and the magnetic force acting on the charge. ### Step-by-Step Solution: 1. **Identify the Electric Force**: The electric force \( \vec{F}_E \) on a charge in an electric field is given by: \[ \vec{F}_E = q \vec{E} \] Given the electric field \( \vec{E} = 3 \hat{i} + \hat{j} + 2 \hat{k} \), the y-component of the electric force \( F_{Ey} \) is: \[ F_{Ey} = q E_y = q \cdot 1 = q \] 2. **Identify the Magnetic Force**: The magnetic force \( \vec{F}_B \) on a charge moving in a magnetic field is given by: \[ \vec{F}_B = q (\vec{v} \times \vec{B}) \] where \( \vec{v} = 3 \hat{i} + 4 \hat{j} + \hat{k} \) and \( \vec{B} = \hat{i} + \hat{j} + 3 \hat{k} \). 3. **Calculate the Cross Product \( \vec{v} \times \vec{B} \)**: We can calculate the cross product using the determinant of a matrix: \[ \vec{v} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 1 \\ 1 & 1 & 3 \end{vmatrix} \] Expanding this determinant, we have: \[ \vec{v} \times \vec{B} = \hat{i} \begin{vmatrix} 4 & 1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 4 \\ 1 & 1 \end{vmatrix} \] Calculating the determinants: - For \( \hat{i} \): \[ 4 \cdot 3 - 1 \cdot 1 = 12 - 1 = 11 \] - For \( \hat{j} \): \[ 3 \cdot 3 - 1 \cdot 1 = 9 - 1 = 8 \] - For \( \hat{k} \): \[ 3 \cdot 1 - 4 \cdot 1 = 3 - 4 = -1 \] Thus, we have: \[ \vec{v} \times \vec{B} = 11 \hat{i} - 8 \hat{j} - 1 \hat{k} \] 4. **Calculate the y-component of the Magnetic Force**: The y-component of the magnetic force \( F_{By} \) is: \[ F_{By} = q (v \times B)_y = q \cdot (-8) = -8q \] 5. **Combine the Forces**: The total y-component of the force \( F_y \) is the sum of the electric and magnetic y-components: \[ F_y = F_{Ey} + F_{By} = q + (-8q) = q - 8q = -7q \] ### Final Answer: The y-component of the force experienced by the charge \( +q \) is: \[ F_y = -7q \hat{j} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

Find vecaxxvecb and |vecaxxvecb| if veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is