Home
Class 12
CHEMISTRY
The equilibrium constant for the decompo...

The equilibrium constant for the decomposition of water `H_2O(g) hArr H_2(g)+1/2O_2(g)` is given by : (`alpha`=degree of dissociation of `H_2O` (g) p=Total equilibrium pressure)

A

`K=(alpha^3p^(1//2))/((1-alpha)(2-alpha)^(1//2))`

B

`K=(alpha^(3//2)p^(1//2))/((1-alpha)(2+alpha)^(1//2))`

C

`K=(alpha^3p^(1//2))/sqrt2`

D

`K=(alpha^(3)p^(1//2))/((1-alpha)(2+alpha)^(1//2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the equilibrium constant for the decomposition of water \( H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \), we will follow these steps: ### Step 1: Write the Reaction and Define Variables The reaction is: \[ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \] Let: - \( y \) = initial pressure of \( H_2O \) - \( \alpha \) = degree of dissociation of \( H_2O \) - \( p \) = total equilibrium pressure ### Step 2: Determine the Changes in Pressure At equilibrium: - Pressure of \( H_2O \) = \( y(1 - \alpha) \) - Pressure of \( H_2 \) = \( y\alpha \) - Pressure of \( O_2 \) = \( \frac{1}{2} y\alpha \) ### Step 3: Calculate Total Pressure at Equilibrium The total pressure at equilibrium \( p \) can be expressed as: \[ p = \text{Pressure of } H_2O + \text{Pressure of } H_2 + \text{Pressure of } O_2 \] Substituting the pressures: \[ p = y(1 - \alpha) + y\alpha + \frac{1}{2} y\alpha \] Simplifying this gives: \[ p = y(1 - \alpha + \alpha + \frac{1}{2}\alpha) = y(1 + \frac{1}{2}\alpha) \] ### Step 4: Solve for Initial Pressure \( y \) From the equation derived above: \[ p = y\left(1 + \frac{1}{2}\alpha\right) \] Rearranging gives: \[ y = \frac{2p}{2 + \alpha} \] ### Step 5: Write the Expression for the Equilibrium Constant \( K \) The equilibrium constant \( K \) is given by: \[ K = \frac{(P_{H_2})^{1} \cdot (P_{O_2})^{\frac{1}{2}}}{(P_{H_2O})^{1}} \] Substituting the pressures at equilibrium: \[ K = \frac{(y\alpha)^{1} \cdot \left(\frac{1}{2}y\alpha\right)^{\frac{1}{2}}}{y(1 - \alpha)} \] This simplifies to: \[ K = \frac{(y\alpha) \cdot \left(\frac{1}{2}y\alpha\right)^{\frac{1}{2}}}{y(1 - \alpha)} \] \[ K = \frac{y\alpha \cdot \frac{1}{\sqrt{2}}(y\alpha)^{\frac{1}{2}}}{y(1 - \alpha)} \] \[ K = \frac{y^{\frac{3}{2}} \alpha^{\frac{3}{2}}}{\sqrt{2}(1 - \alpha)} \] ### Step 6: Substitute \( y \) into the Expression for \( K \) Substituting \( y = \frac{2p}{2 + \alpha} \): \[ K = \frac{\left(\frac{2p}{2 + \alpha}\right)^{\frac{3}{2}} \alpha^{\frac{3}{2}}}{\sqrt{2}(1 - \alpha)} \] This leads to: \[ K = \frac{(2p)^{\frac{3}{2}} \alpha^{\frac{3}{2}}}{\sqrt{2}(1 - \alpha)(2 + \alpha)^{\frac{3}{2}}} \] ### Conclusion The final expression for the equilibrium constant \( K \) is: \[ K = \frac{(2p)^{\frac{3}{2}} \alpha^{\frac{3}{2}}}{\sqrt{2}(1 - \alpha)(2 + \alpha)^{\frac{3}{2}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The equilibrium constant (K_(p)) for the decomposition of gaseous H_(2)O H_(2)O(g)hArr H_(2)(g)+(1)/(2)O_(2)(g) is related to the degree of dissociation alpha at a total pressure P by

Write the equilibrium constant of the reaction C(s)+H_(2)O(g)hArrCO(g)+H_(2)(g)

The equilibrium constant K_(p) for the reaction H_(2)(g)+I_(2)(g) hArr 2HI(g) changes if:

The equilibrium constant for the reaction CaSO_(4).H_(2)O(s)hArr CaSO_(4).3H_(2)O(s)+2H_(2)O(g) is equal to

For the dissociation reaction N_(2)O_(4) (g)hArr 2NO_(2)(g) , the degree of dissociation (alpha) interms of K_(p) and total equilibrium pressure P is:

Write the equilibrium constant expressions for the following reactions. N_2(g) +O_2(g)hArr 2NO(g)

Write the equilibrium constant expressions for the following reactions. N_2 O_4 g hArr 2NO_2 (g)

Write the equilibrium constant expression for the following equilibria: 2NO (g) + O_2(g) hArr 2NO_2 (g)

If in the reaction, N_(2)O_(4)(g)hArr2NO_(2)(g), alpha is the degree of dissociation of N_(2)O_(4) , then the number of moles at equilibrium will be

Write the equilibrium constant expression for the following reactions : CH_4 (g) + 2O_2 (g)hArr CO_2(g)+ 2H_2O (g)