Home
Class 12
CHEMISTRY
Fe(2)O(2)(s)+(3)/(2)C(s)to(3)/(2)CO(2)(g...

`Fe_(2)O_(2)(s)+(3)/(2)C(s)to(3)/(2)CO_(2)(g)+2Fe(s)`
`DeltaH^(@)=+234.12KJ `
`C(s)+O_(2)(g)toCO_(2)(g) DeltaH^(@)=-393.5KJ`
Use these equations and `DeltaH^(@)` value to calculate `DeltaH^(@)` for this reaction :
`4Fe(s)+3O_(2)(g)to2Fe_(2)O_(3)(s)`

A

`-1648.7kJ`

B

`-1255.3kJ`

C

`-1021.2kJ`

D

`-129.4 kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the enthalpy change (ΔH°) for the reaction: \[ 4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s) \] we will use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps of the reaction. ### Step 1: Write down the given reactions and their ΔH° values. 1. **Reaction 1:** \[ Fe_2O_3(s) + \frac{3}{2}C(s) \rightarrow \frac{3}{2}CO_2(g) + 2Fe(s) \] \[ \Delta H° = +234.12 \, \text{kJ} \] 2. **Reaction 2:** \[ C(s) + O_2(g) \rightarrow CO_2(g) \] \[ \Delta H° = -393.5 \, \text{kJ} \] ### Step 2: Manipulate Reaction 1. To find the desired reaction, we need to reverse Reaction 1 and multiply it by 2 to get \( 2Fe_2O_3 \) on the right side. - **Reversed Reaction 1 (multiplied by 2):** \[ 4Fe(s) + 3CO_2(g) \rightarrow 2Fe_2O_3(s) + 3C(s) \] \[ \Delta H° = -2 \times 234.12 \, \text{kJ} = -468.24 \, \text{kJ} \] ### Step 3: Manipulate Reaction 2. We need 3 moles of \( O_2 \) for our desired reaction, so we multiply Reaction 2 by 3. - **Modified Reaction 2 (multiplied by 3):** \[ 3C(s) + 3O_2(g) \rightarrow 3CO_2(g) \] \[ \Delta H° = 3 \times (-393.5 \, \text{kJ}) = -1180.5 \, \text{kJ} \] ### Step 4: Add the manipulated reactions. Now we add the two manipulated reactions together: 1. From Reversed Reaction 1: \[ 4Fe(s) + 3CO_2(g) \rightarrow 2Fe_2O_3(s) + 3C(s) \] 2. From Modified Reaction 2: \[ 3C(s) + 3O_2(g) \rightarrow 3CO_2(g) \] Combining these gives: \[ 4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s) \] ### Step 5: Calculate the total ΔH°. Now, we can find the total ΔH° for the desired reaction: \[ \Delta H° = (-468.24 \, \text{kJ}) + (-1180.5 \, \text{kJ}) = -1648.74 \, \text{kJ} \] ### Final Answer: \[ \Delta H° = -1648.74 \, \text{kJ} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction Fe_2N(s)+(3)/(2)H_2(g)=2Fe(s)+NH_3(g)

Consider the following reactions. DeltaH^(@) values of the reactions hve been given as -x, -y and z kJ. Fe_(3)O_(4)(s) to 3Fe(s) + 2O_(2)(g), DeltaH^(@) = z kJ 2Fe(s) + O_(2)(g) to 2FeO(s), DeltaH^(@) =-x kJ 4Fe(s) + 3O_(2)(g) to 2Fe_(2)O_(3)(s), DeltaH^(@) =-y kJ Heat of reaction for the reaction, FeO(s) + Fe_(2)O_(3)(s) to Fe_(3)O_(4)(s) is :

the standard heat of formation of Fe2O3 (s) is 824.2kJ mol-1 Calculate heat change for the reaction. 4Fe(s) + 302 (g)= 2Fe2O3(s)

Given Delta_(r)S^(@)=-266 and the listed [S_(m)^(@)value] Calculate S^(@) "for" Fe_(3)O_(4)(s) 4Fe_(3)O_(4)(s)[...] +O_(2)(g)[205] to6Fe_(2)O_(3)(s)[87]

If C(s)+O_(2)(g)to CO_(2)(g),DeltaH=rand CO(g)+1/2O_(2)to CO_(2)(g),DeltaH=s then, the heat of formation of CO is

Given (i) 2Fe_(2)O_(3)(s) rarr 4Fe(s)+3O_(2)(g) , DeltaG^(@)=+1487.0 kj mol^(-1) (ii) 2CI(g)+O_(2) rarr 2CO_(2)(g) , Delta_(r )G^(@)=-514.4 kj mol^(-1) Free energy change Delta_(r)G^(@) for the reaction 2Fe_(2)O_(3)(s)+6CO(g) rarr 4Fe(s)+6cO_(2)(g) will be :

Which of the following statements is correct about the reaction given below:- 4Fe(s)+3O_(2)(g)rarr2Fe_(2)O_(3)(g)

Which of the following statements is correct about the reaction given below:- 4Fe(s)+3O_(2)(g)rarr2Fe_(2)O_(3)(g)

Given: i. 2Fe(s) +(3)/(2)O_(2)(g) rarr Fe_(2)O_(3)(s), DeltaH^(Theta) =- 193.4 kJ ii. Mg(s) +(1)/(2)O_(2)(g) rarr MgO(s), DeltaH^(Theta) =- 140.2kJ What is DeltaH^(Theta) of the reaction? 3Mg +Fe_(2)O_(3)rarr 3MgO +2Fe

C(s)+O_(2)(g)toCO_(2)(g),DeltaH=-94 kcal 2CO(g)+O_(2)to2CO_(2),DeltaH=-135.2 kcal The heat of formation of CO(g) is