Home
Class 12
CHEMISTRY
Calculate the cell potential of followin...

Calculate the cell potential of following cell
Pt(s)|H_(2)(g)"(0.1 bar)"|BOH(0.1M)||HA(0.1M)|H_(2)(g)("1 bar")|Pt`
Given
`K_(a)(HA)=10^(-7), K_(b)(BOH)=10^(-5)`

A

0.39 V

B

0.36 V

C

0.93 V

D

0.63 V

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the cell potential of the given electrochemical cell, we can follow these steps: ### Step 1: Identify the components of the cell The cell representation is: \[ \text{Pt(s)} | \text{H}_2(g)(0.1 \text{ bar}) | \text{BOH}(0.1M) || \text{HA}(0.1M) | \text{H}_2(g)(1 \text{ bar}) | \text{Pt(s)} \] Here: - The left side (anode) has hydrogen gas at 0.1 bar and BOH at 0.1 M. - The right side (cathode) has hydrogen gas at 1 bar and HA at 0.1 M. ### Step 2: Calculate the concentration of \( \text{OH}^- \) ions from \( \text{BOH} \) Given \( K_b(\text{BOH}) = 10^{-5} \): \[ [\text{OH}^-] = \sqrt{K_b \cdot [\text{BOH}]} = \sqrt{10^{-5} \cdot 0.1} = \sqrt{10^{-6}} = 10^{-3} \text{ M} \] ### Step 3: Calculate the concentration of \( \text{H}^+ \) ions Using the ion product of water: \[ K_w = [\text{H}^+][\text{OH}^-] = 10^{-14} \] Substituting \( [\text{OH}^-] \): \[ [\text{H}^+] = \frac{K_w}{[\text{OH}^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11} \text{ M} \] ### Step 4: Calculate the concentration of \( \text{H}^+ \) ions from the weak acid \( \text{HA} \) Given \( K_a(\text{HA}) = 10^{-7} \): \[ [\text{H}^+] = \sqrt{K_a \cdot [\text{HA}]} = \sqrt{10^{-7} \cdot 0.1} = \sqrt{10^{-8}} = 10^{-4} \text{ M} \] ### Step 5: Write the half-reactions For the anode (oxidation): \[ \text{H}_2(g) \rightarrow 2 \text{H}^+ + 2e^- \] For the cathode (reduction): \[ 2 \text{H}^+ + 2e^- \rightarrow \text{H}_2(g) \] ### Step 6: Calculate the reaction quotient \( Q \) The reaction quotient \( Q \) is given by: \[ Q = \frac{[\text{H}^+]^2_{\text{anode}} \cdot P_{\text{H}_2}^{\text{cathode}}}{[\text{H}^+]^2_{\text{cathode}} \cdot P_{\text{H}_2}^{\text{anode}}} \] Substituting the values: \[ Q = \frac{(10^{-11})^2 \cdot 1}{(10^{-4})^2 \cdot 0.1} = \frac{10^{-22}}{10^{-8} \cdot 0.1} = \frac{10^{-22}}{10^{-9}} = 10^{-13} \] ### Step 7: Use the Nernst equation to calculate \( E_{cell} \) The Nernst equation is: \[ E_{cell} = E^\circ_{cell} - \frac{0.059}{n} \log Q \] For the hydrogen electrode, \( E^\circ_{cell} = 0 \) and \( n = 2 \): \[ E_{cell} = 0 - \frac{0.059}{2} \log(10^{-13}) = -0.0295 \cdot (-13) = 0.3835 \text{ V} \] ### Step 8: Final result Thus, the cell potential \( E_{cell} \) is approximately: \[ E_{cell} \approx 0.39 \text{ V} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the e.m.f. of the following cell at 298K : Pt(s)|Br_(2)(l)|Br^(-)(0.010M)||H^(+)(0.030M)|H_(2)(g)(1"bar")|Pt(s) Given : E_((1)/(2)Br_(2)//Br^(-))^(@)=+1.08V .

calculate the e.m.f (in V) of the cell: Pt|H_2(g)|BOH(Aq)"||"HA(Aq)|H_2(g)|Pt , 0.1bar 1M 0.1M 1bar Given : K_a(HA)=10^(-7), K_b(BOH)=10^(-6) (a)0.39V (b)0.36V (c)0.93V (d)None of these

Calculate the e.m.f. of the cell Pt|H_(2)(1.0atm)|CH_(3)COOH (0.1M)||NH_(3)(aq,0.01M)|H_(2)(1.0atm)|Pt K_(a) (CH_(3)COOH) =1.8 xx 10^(-5), K_(b),(NH_(3)) = 1.8 xx 10^(-5)

Write the cell reaction and calculate the e.m.f. of the following cell at 298 K : Sn(s) |Sn^(2+) (0.004M)||H^(+) (0.020M) |H_(2)(g) (1 bar )| Pt(s) (Given E_(Sn^(2+)//Sn)^(@) = -0.14V ).

Calculate the emf of the following cell at 298K : Fe(s) abs(Fe^(2+)(0.001M))abs(H^+(1M))H_2(g) (1"bar"),Pt(s) ( "Give E_("Cell")^@ = +0.44V )

Determine the potential of the following cell: Pt|H_2(g,0.1 "bar")|H^+(aq,10^(-3)M"||"MnO_4^-)(aq),0.1M) Mn^(2+)(aq,0.01M),H^+(aq,0.01M)|Pt Given : E_(MnO_4^(-)|Mn^(2+))^(@)=1.51V (a)1.54V (b)1.48V (c)1.84V (d)none of these

pH of the anodic solution of the following cell is Pt, H_2(1atm)|H^+(xM)||H^(+)(1M)|H_2(1 atm ),Pt if E_("cell") =0.2364V.

Calculate the electrode potential of given electrode Pt, Cl_(2) (1.5 bar) 2Cl^(-) (0.01M), E_(Cl_(2)//2Cl^(-))^(@) = 1.36V

Mark the correct Nernst equation for the given cell. F_((s))|Fe^(2+)(0.001 M) ||H^(+)(1M) | H_(2(g)) ( 1 bar ) | Pt_((s)) is

The pH of LHE in the following cell is : Pt, H_(2)(1atm)|H^(o+)(x M)||H^(o+)(0.1M)|H_(2)(0.1atm)Pt E_(cell)=0.295V .