Home
Class 12
CHEMISTRY
For the following reaction Ag((aq))^(+...

For the following reaction
Ag_((aq))^(+)+Cl_((aq))^(-)rarrAgCl_((s))`
Given : `DeltaG_(f)^(@), AgCl=-"112.44 kJ/mol," DeltaG_(f)^(@) Cl^(-)=-"130 kJ/mol", DeltaG_(f)^(@)Ag^(+)="75 kJ/mol"` Report your answer by rounding it upto nearest whole number. The `K_(sp)` of `AgCl` is `nxx10^(-10)`. The value of 'n'' is .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the solubility product constant (Ksp) for the reaction: \[ \text{Ag}^+_{(aq)} + \text{Cl}^-_{(aq)} \rightarrow \text{AgCl}_{(s)} \] Given the standard Gibbs free energy of formation (\( \Delta G_f^\circ \)) values: - \( \Delta G_f^\circ \) for AgCl = -112.44 kJ/mol - \( \Delta G_f^\circ \) for Cl^- = -130 kJ/mol - \( \Delta G_f^\circ \) for Ag^+ = 75 kJ/mol ### Step 1: Calculate \( \Delta G^\circ \) for the reaction The standard Gibbs free energy change for the reaction can be calculated using the formula: \[ \Delta G^\circ_{\text{reaction}} = \Delta G_f^\circ (\text{products}) - \Delta G_f^\circ (\text{reactants}) \] Substituting the values: \[ \Delta G^\circ_{\text{reaction}} = \Delta G_f^\circ (\text{AgCl}) - \left( \Delta G_f^\circ (\text{Ag}^+) + \Delta G_f^\circ (\text{Cl}^-) \right) \] \[ = (-112.44 \text{ kJ/mol}) - \left( 75 \text{ kJ/mol} - 130 \text{ kJ/mol} \right) \] Calculating the right-hand side: \[ = -112.44 \text{ kJ/mol} - (75 \text{ kJ/mol} - 130 \text{ kJ/mol}) \] \[ = -112.44 \text{ kJ/mol} - (75 + 130) \text{ kJ/mol} \] \[ = -112.44 \text{ kJ/mol} - 205 \text{ kJ/mol} \] \[ = -112.44 + 205 \text{ kJ/mol} \] \[ = -57.44 \text{ kJ/mol} \] ### Step 2: Convert to Joules Convert \( \Delta G^\circ_{\text{reaction}} \) to Joules: \[ \Delta G^\circ_{\text{reaction}} = -57.44 \text{ kJ/mol} \times 1000 \text{ J/kJ} = -57440 \text{ J/mol} \] ### Step 3: Relate \( \Delta G^\circ \) to Ksp Using the relationship between \( \Delta G^\circ \) and the equilibrium constant \( K \): \[ \Delta G^\circ = -RT \ln K \] Where: - \( R = 8.314 \text{ J/(mol K)} \) - \( T = 300 \text{ K} \) Rearranging gives: \[ \ln K = -\frac{\Delta G^\circ}{RT} \] Substituting the values: \[ \ln K = -\frac{-57440 \text{ J/mol}}{(8.314 \text{ J/(mol K)})(300 \text{ K})} \] Calculating the denominator: \[ = 8.314 \times 300 = 2494.2 \text{ J/mol} \] Now substituting back: \[ \ln K = \frac{57440}{2494.2} \approx 23.05 \] ### Step 4: Calculate K Exponentiating to find \( K \): \[ K = e^{23.05} \approx 9.8 \times 10^{10} \] ### Step 5: Determine Ksp The solubility product \( K_{sp} \) can be expressed as: \[ K_{sp} = s^2 \] Where \( s \) is the solubility. Since we have \( K_{sp} \approx 10^{10} \), we can express it in the form \( n \times 10^{-10} \): \[ K_{sp} = 1 \times 10^{-10} \] Thus, the value of \( n \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate Delta_(r)G^(c-) of the reaction : Ag^(o+)(aq)+Cl^(c-)(aq) rarr AgCl(s) Given :Delta_(f)G^(c-)._(AgCl)=-109kJ mol ^(-1) Delta_(f)G^(c-)_((Cl^(c-)))=-129k J mol ^(-1) Delta_(f)G^(c-)._((Ag^(o+)))=-77 kJ mol ^(-1)

Calculate DeltaG_(r)^(@) of the following reaction Ag^(+)(aq)+cI^(-)(aq)rarrAgCI(s) Given DeltaG_(r)^(@)(AgCI)rarr-109 kJ Mol^(-1) DeltaG_(r)^(@)(CI^(-))rarr-129 kJ Mol^(-1) DeltaG_(r)^(@)(ag^(-))rarr77 kJ Mol^(-1) (i)Represent the above reaction in form of a cel (ii) Calcualte E^(@) of the cel (iii) Find log_(10)K_(sp) of AgCI

DeltaG° for the following reaction: I_2(s) + H_2S(g) rarr 2HI(g) + S(s) at 298 K is, Given that Delta_fG°HI(g) = 1.8 kJ mol^-1 . Delta_fG°H_2S(g) = 33.8 kJ mol^-1 .

Calculate P-Cl bond enthalpy P(s)+(3)/(2)Cl_(2)(g)rarr PCl_(3)(g) Given : Delta_(f)H(PCl_(3),g)=306kJ //mol DeltaH_("atomization")(P,s)=314kJ//mol , Delta_(r)H(Cl,g)=1231kJ//mol

Find out InK_(eq) for the formation of NO_(2) from NO and O_(2) at 298 K NO_(g)+(1)/(2)O_(2)hArrNO_(2)g Given: DeltaG_(f)^(@)(NO_(2))=52.0KJ//mol e Delta_(f)^(@)(NO)=87.0KJ//mol e Delta_(f)^(@)(O_(2))=0KJ//mol e

Calculate the standard enthalpy of solution of AgCl(s) in water DeltaH_(f)^(0)(AgCl,s)= -127.07kJ mol^(-1), Delta H_(f)^(0)(Ag^(+),aq)=105.58 kJ mol^(-1) ,DeltaH_(f)^(0)(Cl^(-),aq)= -167.35 kJ mol^(-1)

Calculate the standard enthalpy of solution of AgCl(s) in water DeltaH_(f)^(0)(AgCl,s)= -127.07kJ mol^(-1), Delta H_(f)^(0)(Ag^(+),aq)=105.58 kJ mol^(-1),DeltaH_(f)^(0)(Cl^(-),aq)= -167.35 kJ mol^(-1)

For the following reaction: K=1.7xx10^(7) at 25^(@)C Ag^(o+)(aq)+2NH_(3)(aq) hArr [Ag(NH_(3))_(2)]^(o+) What is the value of DeltaG^(ɵ) in kJ ?

Calculate Delta_(r)G for the reaction at 27^(@)C H_(2)(g)+2Ag^(+)(aq)hArr2Ag(s)+2H^(+)(aq) Given : P_(H2)=0.5 bar, [Ag^(+)]=10^(-5)M, [H^(+)]=10^(-3)M,Delta_(r)G^(@)[Ag^(+)(aq)]=77.1kJ//mol

For the reaction A hArr B+C at equilibrium, the concentration of A is 1xx10^(-3)M B is 0.15 M and C is 0.05 M. The DeltaG^(@) for the hydrolysis of A at 300 K is -X" kJ/mole" . The value of X is ? Report your answer by rounding it upto nearest integer.