Home
Class 12
CHEMISTRY
The increasing order of Ag^(+) ion conce...

The increasing order of `Ag^(+)` ion concentration in
I. Saturated solution of `AgCl`
II. Saturated solution of `Agl`
III. `1MAg(NH_(3))_(2)^(+)" in "0.1 M NH_(3)`
IV. `1MAg(CN)_(2)^(-)" in "0.1 M KCN`
Given :
`K_(sp)" of "AgCl=1.0xx10^(-10)`
`K_(sp)" of "Agl=1.0xx10^(-16)`
`K_(d)" of "Ag(NH_(3))_(2)^(+)=1.0xx10^(-8)`
`K_(d)" of "Ag(CN)_(2)^(-)=1.0xx10^(-21)`

A

`I lt II lt III lt IV`

B

`IV lt III lt II lt I`

C

`IV lt II lt III lt I`

D

`IV lt II lt I lt III`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the increasing order of `Ag^+` ion concentration in the given solutions, we will calculate the concentration of `Ag^+` in each case step by step. ### Step 1: Calculate `Ag^+` concentration in saturated solution of `AgCl` - The dissociation of `AgCl` is given by: \[ \text{AgCl} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \] - The solubility product constant \( K_{sp} \) for `AgCl` is given as \( 1.0 \times 10^{-10} \). - Since the concentration of `Ag^+` and `Cl^-` are equal in a saturated solution, we can write: \[ K_{sp} = [\text{Ag}^+][\text{Cl}^-] = x^2 \] where \( x \) is the concentration of `Ag^+`. - Thus, we have: \[ x^2 = 1.0 \times 10^{-10} \] \[ x = \sqrt{1.0 \times 10^{-10}} = 1.0 \times 10^{-5} \, \text{M} \] ### Step 2: Calculate `Ag^+` concentration in saturated solution of `AgI` - The dissociation of `AgI` is given by: \[ \text{AgI} \rightleftharpoons \text{Ag}^+ + \text{I}^- \] - The solubility product constant \( K_{sp} \) for `AgI` is given as \( 1.0 \times 10^{-16} \). - Similarly, we can write: \[ K_{sp} = [\text{Ag}^+][\text{I}^-] = y^2 \] where \( y \) is the concentration of `Ag^+`. - Thus, we have: \[ y^2 = 1.0 \times 10^{-16} \] \[ y = \sqrt{1.0 \times 10^{-16}} = 1.0 \times 10^{-8} \, \text{M} \] ### Step 3: Calculate `Ag^+` concentration in `1 M Ag(NH3)2^+` in `0.1 M NH3` - The dissociation of the complex is given by: \[ \text{Ag(NH}_3\text{)}_2^+ \rightleftharpoons \text{Ag}^+ + 2 \text{NH}_3 \] - The dissociation constant \( K_d \) is given as \( 1.0 \times 10^{-8} \). - Let \( z \) be the concentration of `Ag^+`. We can set up the equation: \[ K_d = \frac{[\text{Ag}^+][\text{NH}_3]^2}{[\text{Ag(NH}_3\text{)}_2^+]} \approx \frac{z(0.1)^2}{1 - z} \] - Assuming \( z \) is very small compared to 1, we can simplify: \[ K_d \approx \frac{z(0.1)^2}{1} = z(0.01) \] - Thus, we have: \[ 1.0 \times 10^{-8} = z(0.01) \] \[ z = \frac{1.0 \times 10^{-8}}{0.01} = 1.0 \times 10^{-6} \, \text{M} \] ### Step 4: Calculate `Ag^+` concentration in `1 M Ag(CN)2^-` in `0.1 M KCN` - The dissociation of the complex is given by: \[ \text{Ag(CN)}_2^- \rightleftharpoons \text{Ag}^+ + 2 \text{CN}^- \] - The dissociation constant \( K_d \) is given as \( 1.0 \times 10^{-21} \). - Let \( w \) be the concentration of `Ag^+`. We can set up the equation: \[ K_d = \frac{[\text{Ag}^+][\text{CN}^-]^2}{[\text{Ag(CN)}_2^-]} \approx \frac{w(0.1)^2}{1 - w} \] - Assuming \( w \) is very small compared to 1, we can simplify: \[ K_d \approx \frac{w(0.1)^2}{1} = w(0.01) \] - Thus, we have: \[ 1.0 \times 10^{-21} = w(0.01) \] \[ w = \frac{1.0 \times 10^{-21}}{0.01} = 1.0 \times 10^{-19} \, \text{M} \] ### Summary of Concentrations 1. `AgCl`: \( 1.0 \times 10^{-5} \, \text{M} \) 2. `AgI`: \( 1.0 \times 10^{-8} \, \text{M} \) 3. `Ag(NH3)2^+`: \( 1.0 \times 10^{-6} \, \text{M} \) 4. `Ag(CN)2^-`: \( 1.0 \times 10^{-19} \, \text{M} \) ### Increasing Order of `Ag^+` Concentration From the calculated concentrations: - \( 1.0 \times 10^{-19} \) (Ag(CN)2^-) < \( 1.0 \times 10^{-8} \) (AgI) < \( 1.0 \times 10^{-6} \) (Ag(NH3)2^+) < \( 1.0 \times 10^{-5} \) (AgCl) Thus, the increasing order of `Ag^+` ion concentration is: **IV < II < III < I**
Promotional Banner

Similar Questions

Explore conceptually related problems

Concentration of CN^(-) " in " 0.1 M HCN is (Given : K_(a) = 4 xx 10^(-10) )

What will be the Ag^(+) ion concentration in a solution of 0.2 M solution of [Ag(NH_(3))_(2)^(+)] ? Ag (NH_(3))_(2)^(+) hArr Ag^(+) +2NH_(3) , " " K_("dis")= 6.8 xx10^(-8)

What is the molar solubility of AgCl(s) in 0.1 M NH_(3)(aq)?K_(sp)(AgCl)=1.8xx10^(-10), K_(f)[Ag(NH_(3))_(2)]^(+)=1.6xx10^(7).

Solubility of AgCl in 0.1 M CaCl_2 solution will be (K_(sp) of AgCl= 1.8×(10)^(-10) )

Arrange the following solutions in decreasing order of [Ag^(o+)] ion: I. 1M [Ag(CN)_(2)]^(Theta) II. Saturated AgC1 III. 1M [Ag(NH_(3))_(2)]^(o+) in 0.1M NH_(3) IV. Saturated AgI (K_(sp) of AgC1 = 10^(-10), K_(sp) of AgI = 8.3 xx 10^(-17) K_(f) (formation constant) [Ag(CN_(2))]^(Theta) = 10^(21), K_(f) [Ag(NH_(3))_(2)]^(o+) = 10^(8)

The solubility of AgCl in 0.1M NaCI is (K_(sp) " of AgCl" = 1.2 xx 10^(-10))

K_(sp) of AgCl is 1xx10^(-10) . Its solubility in 0.1 M KNO_(3) will be :

Solubility of AgCl in 0.2 M magnesium chloride will be (K_sp of AgCl = 1.8 x 10^(-10)

What is the molarity of F^(-) ions in a saturated solution of BaF_(2) ? (K_(sp)=1.0xx10^(-6))

The simultaneous solubility of AgCN(K_(sp)=2.5xx10^(-16)) and AgCl(K_(sp)=1.6xx10^(-10)) in 1.0 M NH_(3)(aq.) are respectively: [Given: K_(f1)[Ag(NH_(3))_(2)^(+)=10^(7)